Suppr超能文献

基于移动和可穿戴传感器的人体活动识别中深度 SE-BiLSTM 与 IFPOA 微调

Deep SE-BiLSTM with IFPOA Fine-Tuning for Human Activity Recognition Using Mobile and Wearable Sensors.

机构信息

School of Computer Science and Engineering, VIT AP University, Amaravati 522237, India.

出版信息

Sensors (Basel). 2023 Apr 27;23(9):4319. doi: 10.3390/s23094319.

Abstract

Pervasive computing, human-computer interaction, human behavior analysis, and human activity recognition (HAR) fields have grown significantly. Deep learning (DL)-based techniques have recently been effectively used to predict various human actions using time series data from wearable sensors and mobile devices. The management of time series data remains difficult for DL-based techniques, despite their excellent performance in activity detection. Time series data still has several problems, such as difficulties in heavily biased data and feature extraction. For HAR, an ensemble of Deep SqueezeNet (SE) and bidirectional long short-term memory (BiLSTM) with improved flower pollination optimization algorithm (IFPOA) is designed to construct a reliable classification model utilizing wearable sensor data in this research. The significant features are extracted automatically from the raw sensor data by multi-branch SE-BiLSTM. The model can learn both short-term dependencies and long-term features in sequential data due to SqueezeNet and BiLSTM. The different temporal local dependencies are captured effectively by the proposed model, enhancing the feature extraction process. The hyperparameters of the BiLSTM network are optimized by the IFPOA. The model performance is analyzed using three benchmark datasets: MHEALTH, KU-HAR, and PAMPA2. The proposed model has achieved 99.98%, 99.76%, and 99.54% accuracies on MHEALTH, KU-HAR, and PAMPA2 datasets, respectively. The proposed model performs better than other approaches from the obtained experimental results. The suggested model delivers competitive results compared to state-of-the-art techniques, according to experimental results on four publicly accessible datasets.

摘要

普及计算、人机交互、人类行为分析和人类活动识别 (HAR) 领域发展迅速。基于深度学习 (DL) 的技术最近已被有效地用于使用来自可穿戴传感器和移动设备的时间序列数据来预测各种人类动作。尽管基于深度学习的技术在活动检测方面表现出色,但它们在管理时间序列数据方面仍然存在困难。时间序列数据仍然存在一些问题,例如在数据严重偏向和特征提取方面存在困难。对于 HAR,本研究设计了一种基于 Deep SqueezeNet (SE) 和双向长短期记忆 (BiLSTM) 的集成,以及改进的花授粉优化算法 (IFPOA),利用可穿戴传感器数据构建可靠的分类模型。多分支 SE-BiLSTM 自动从原始传感器数据中提取重要特征。由于 SqueezeNet 和 BiLSTM,该模型可以学习顺序数据中的短期依赖关系和长期特征。所提出的模型可以有效地捕获不同的时间局部依赖关系,从而增强特征提取过程。IFPOA 优化了 BiLSTM 网络的超参数。使用三个基准数据集:MHEALTH、KU-HAR 和 PAMPA2 分析模型性能。所提出的模型在 MHEALTH、KU-HAR 和 PAMPA2 数据集上分别实现了 99.98%、99.76%和 99.54%的准确率。从获得的实验结果来看,所提出的模型优于其他方法。根据四个公开数据集上的实验结果,所提出的模型与最先进的技术相比,提供了有竞争力的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验