Suppr超能文献

综合方法剖析 SARS-CoV-2 主蛋白酶 H172Y 突变的耐药机制。

Integrative Approach to Dissect the Drug Resistance Mechanism of the H172Y Mutation of SARS-CoV-2 Main Protease.

机构信息

Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States.

Institute for Molecular Medicine, University of Lübeck, Lübeck 23562, Germany.

出版信息

J Chem Inf Model. 2023 Jun 12;63(11):3521-3533. doi: 10.1021/acs.jcim.3c00344. Epub 2023 May 18.

Abstract

Nirmatrelvir is an orally available inhibitor of SARS-CoV-2 main protease (Mpro) and the main ingredient of Paxlovid, a drug approved by the U.S. Food and Drug Administration for high-risk COVID-19 patients. Recently, a rare natural mutation, H172Y, was found to significantly reduce nirmatrelvir's inhibitory activity. As the COVID-19 cases skyrocket in China and the selective pressure of antiviral therapy builds in the US, there is an urgent need to characterize and understand how the H172Y mutation confers drug resistance. Here, we investigated the H172Y Mpro's conformational dynamics, folding stability, catalytic efficiency, and inhibitory activity using all-atom constant pH and fixed-charge molecular dynamics simulations, alchemical and empirical free energy calculations, artificial neural networks, and biochemical experiments. Our data suggest that the mutation significantly weakens the S1 pocket interactions with the N-terminus and perturbs the conformation of the oxyanion loop, leading to a decrease in the thermal stability and catalytic efficiency. Importantly, the perturbed S1 pocket dynamics weaken the nirmatrelvir binding in the P1 position, which explains the decreased inhibitory activity of nirmatrelvir. Our work demonstrates the predictive power of the combined simulation and artificial intelligence approaches, and together with biochemical experiments, they can be used to actively surveil continually emerging mutations of SARS-CoV-2 Mpro and assist the optimization of antiviral drugs. The presented approach, in general, can be applied to characterize mutation effects on any protein drug targets.

摘要

尼马瑞韦是一种可口服的 SARS-CoV-2 主蛋白酶(Mpro)抑制剂,也是美国食品药品监督管理局批准的用于高危 COVID-19 患者的药物帕罗韦德(Paxlovid)的主要成分。最近,发现一种罕见的天然突变 H172Y,可显著降低尼马瑞韦的抑制活性。随着中国 COVID-19 病例的激增和美国抗病毒治疗的选择性压力的增加,迫切需要对 H172Y 突变如何赋予耐药性进行表征和理解。在这里,我们使用全原子恒 pH 和固定电荷分子动力学模拟、变分和经验自由能计算、人工神经网络和生化实验研究了 H172Y Mpro 的构象动力学、折叠稳定性、催化效率和抑制活性。我们的数据表明,该突变显著削弱了 S1 口袋与 N 端的相互作用,并扰乱了氧阴离子环的构象,导致热稳定性和催化效率降低。重要的是,扰动的 S1 口袋动力学减弱了尼马瑞韦在 P1 位置的结合,这解释了尼马瑞韦抑制活性的降低。我们的工作证明了综合模拟和人工智能方法的预测能力,并且结合生化实验,可以用于积极监测 SARS-CoV-2 Mpro 不断出现的突变,并协助优化抗病毒药物。总的来说,所提出的方法可以应用于表征任何蛋白质药物靶标上的突变效应。

相似文献

1
Integrative Approach to Dissect the Drug Resistance Mechanism of the H172Y Mutation of SARS-CoV-2 Main Protease.
J Chem Inf Model. 2023 Jun 12;63(11):3521-3533. doi: 10.1021/acs.jcim.3c00344. Epub 2023 May 18.
5
Computational Insights into SARS-CoV-2 Main Protease Mutations and Nirmatrelvir Efficacy: The Effects of P132H and P132H-A173V.
J Chem Inf Model. 2024 Jul 8;64(13):5207-5218. doi: 10.1021/acs.jcim.4c00334. Epub 2024 Jun 24.
8
Stabilization of the Dimeric State of SARS-CoV-2 Main Protease by GC376 and Nirmatrelvir.
Int J Mol Sci. 2023 Mar 23;24(7):6062. doi: 10.3390/ijms24076062.
9
AI-Driven Discovery of SARS-CoV-2 Main Protease Fragment-like Inhibitors with Antiviral Activity .
J Chem Inf Model. 2023 May 8;63(9):2866-2880. doi: 10.1021/acs.jcim.3c00409. Epub 2023 Apr 14.

引用本文的文献

1
Targeting SARS-CoV-2 main protease: a pharmacophore and molecular modeling approach.
J Mol Model. 2025 Jul 29;31(8):222. doi: 10.1007/s00894-025-06441-5.
4
Potent antiviral activity of simnotrelvir against key epidemic SARS-CoV-2 variants with a high resistance barrier.
Antimicrob Agents Chemother. 2025 Apr 2;69(4):e0155624. doi: 10.1128/aac.01556-24. Epub 2025 Mar 10.
5
A comprehensive study of SARS-CoV-2 main protease (Mpro) inhibitor-resistant mutants selected in a VSV-based system.
PLoS Pathog. 2024 Sep 11;20(9):e1012522. doi: 10.1371/journal.ppat.1012522. eCollection 2024 Sep.
6
SARS-CoV-2 resistance to monoclonal antibodies and small-molecule drugs.
Cell Chem Biol. 2024 Apr 18;31(4):632-657. doi: 10.1016/j.chembiol.2024.03.008.
7
Contributions of Hyperactive Mutations in M from SARS-CoV-2 to Drug Resistance.
ACS Infect Dis. 2024 Apr 12;10(4):1174-1184. doi: 10.1021/acsinfecdis.3c00560. Epub 2024 Mar 12.
8
Discovery of Nirmatrelvir Resistance Mutations in SARS-CoV-2 3CLpro: A Computational-Experimental Approach.
J Chem Inf Model. 2023 Nov 27;63(22):7180-7188. doi: 10.1021/acs.jcim.3c01269. Epub 2023 Nov 10.

本文引用的文献

1
Naturally Occurring Mutations of SARS-CoV-2 Main Protease Confer Drug Resistance to Nirmatrelvir.
ACS Cent Sci. 2023 Jul 24;9(8):1658-1669. doi: 10.1021/acscentsci.3c00538. eCollection 2023 Aug 23.
2
A Guide to the Continuous Constant pH Molecular Dynamics Methods in Amber and CHARMM [Article v1.0].
Living J Comput Mol Sci. 2022;4(1). doi: 10.33011/livecoms.4.1.1563. Epub 2022 Aug 22.
3
Structural basis for the in vitro efficacy of nirmatrelvir against SARS-CoV-2 variants.
J Biol Chem. 2022 Jun;298(6):101972. doi: 10.1016/j.jbc.2022.101972. Epub 2022 Apr 22.
4
Inhibitor binding influences the protonation states of histidines in SARS-CoV-2 main protease.
Chem Sci. 2020 Nov 26;12(4):1513-1527. doi: 10.1039/d0sc04942e. eCollection 2021 Jan 28.
5
Nirmatrelvir Plus Ritonavir: First Approval.
Drugs. 2022 Apr;82(5):585-591. doi: 10.1007/s40265-022-01692-5.
7
Main protease mutants of SARS-CoV-2 variants remain susceptible to nirmatrelvir.
Bioorg Med Chem Lett. 2022 Apr 15;62:128629. doi: 10.1016/j.bmcl.2022.128629. Epub 2022 Feb 16.
8
Oral Nirmatrelvir for High-Risk, Nonhospitalized Adults with Covid-19.
N Engl J Med. 2022 Apr 14;386(15):1397-1408. doi: 10.1056/NEJMoa2118542. Epub 2022 Feb 16.
9
Crystal structure of SARS-CoV-2 main protease in complex with protease inhibitor PF-07321332.
Protein Cell. 2022 Sep;13(9):689-693. doi: 10.1007/s13238-021-00883-2. Epub 2021 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验