Suppr超能文献

基于基因编辑的治疗遗传性视网膜疾病的临床前开发进展。

Advancements in pre-clinical development of gene editing-based therapies to treat inherited retinal diseases.

机构信息

Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States.

Department of Ophthalmology, University of California San Francisco, CA, United States; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, CA, United States.

出版信息

Vision Res. 2023 Aug;209:108257. doi: 10.1016/j.visres.2023.108257. Epub 2023 May 19.

Abstract

One of the major goals in the inherited retinal disease (IRD) field is to develop an effective therapy that can be applied to as many patients as possible. Significant progress has already been made toward this end, with gene editing at the forefront. The advancement of gene editing-based tools has been a recent focus of many research groups around the world. Here, we provide an update on the status of CRISPR/Cas-derived gene editors, promising options for delivery of these editing systems to the retina, and animal models that aid in pre-clinical testing of new IRD therapeutics.

摘要

遗传性视网膜疾病(IRD)领域的主要目标之一是开发一种能够应用于尽可能多患者的有效疗法。为此,基因编辑已经取得了重大进展。基于基因编辑的工具的进步是世界各地许多研究小组最近的关注焦点。在这里,我们提供了 CRISPR/Cas 衍生基因编辑工具的最新状态,这些工具为将这些编辑系统递送到视网膜提供了有希望的选择,以及有助于新的 IRD 治疗药物临床前测试的动物模型。

相似文献

1
Advancements in pre-clinical development of gene editing-based therapies to treat inherited retinal diseases.
Vision Res. 2023 Aug;209:108257. doi: 10.1016/j.visres.2023.108257. Epub 2023 May 19.
2
Gene editing prospects for treating inherited retinal diseases.
J Med Genet. 2020 Jul;57(7):437-444. doi: 10.1136/jmedgenet-2019-106473. Epub 2019 Dec 19.
3
Future Perspectives of Prime Editing for the Treatment of Inherited Retinal Diseases.
Cells. 2023 Jan 29;12(3):440. doi: 10.3390/cells12030440.
4
Genome editing, a superior therapy for inherited retinal diseases.
Vision Res. 2023 May;206:108192. doi: 10.1016/j.visres.2023.108192. Epub 2023 Feb 15.
5
CRISPR genome engineering for retinal diseases.
Prog Mol Biol Transl Sci. 2021;182:29-79. doi: 10.1016/bs.pmbts.2021.01.024. Epub 2021 Mar 19.
6
Challenges to Gene Editing Approaches in the Retina.
Klin Monbl Augenheilkd. 2022 Mar;239(3):275-283. doi: 10.1055/a-1757-9810. Epub 2022 Mar 22.
7
Gene editing technology: Towards precision medicine in inherited retinal diseases.
Semin Ophthalmol. 2021 May 19;36(4):176-184. doi: 10.1080/08820538.2021.1887903. Epub 2021 Feb 23.
8
Genome editing: the breakthrough technology for inherited retinal disease?
Expert Opin Biol Ther. 2017 Oct;17(10):1245-1254. doi: 10.1080/14712598.2017.1347629. Epub 2017 Jul 11.
9
Guiding Lights in Genome Editing for Inherited Retinal Disorders: Implications for Gene and Cell Therapy.
Neural Plast. 2018 May 8;2018:5056279. doi: 10.1155/2018/5056279. eCollection 2018.
10
CRISPR in the Retina: Evaluation of Future Potential.
Adv Exp Med Biol. 2017;1016:147-155. doi: 10.1007/978-3-319-63904-8_8.

引用本文的文献

1
Strategies for non-viral vectors targeting organs beyond the liver.
Nat Nanotechnol. 2024 Apr;19(4):428-447. doi: 10.1038/s41565-023-01563-4. Epub 2023 Dec 27.
2
Lipid nanoparticles with PEG-variant surface modifications mediate genome editing in the mouse retina.
Nat Commun. 2023 Oct 13;14(1):6468. doi: 10.1038/s41467-023-42189-3.
3
Unleashing the potential of CRISPR multiplexing: Harnessing Cas12 and Cas13 for precise gene modulation in eye diseases.
Vision Res. 2023 Dec;213:108317. doi: 10.1016/j.visres.2023.108317. Epub 2023 Sep 16.
4
Gene therapy and therapeutic editing with outer or inner retina animal models.
Vision Res. 2023 Dec;213:108316. doi: 10.1016/j.visres.2023.108316. Epub 2023 Sep 15.

本文引用的文献

1
In vivo CRISPR gene editing in patients with herpetic stromal keratitis.
Mol Ther. 2023 Nov 1;31(11):3163-3175. doi: 10.1016/j.ymthe.2023.08.021. Epub 2023 Aug 31.
3
Vision rescue via unconstrained in vivo prime editing in degenerating neural retinas.
J Exp Med. 2023 May 1;220(5). doi: 10.1084/jem.20220776. Epub 2023 Mar 17.
4
base editing rescues photoreceptors in a mouse model of retinitis pigmentosa.
Mol Ther Nucleic Acids. 2023 Feb 14;31:596-609. doi: 10.1016/j.omtn.2023.02.011. eCollection 2023 Mar 14.
5
Rapid and Reliable Quantification of Prime Editing Targeting Within the Porcine Gene Using a BRET-Based Sensor.
Nucleic Acid Ther. 2023 Jun;33(3):226-232. doi: 10.1089/nat.2022.0037. Epub 2023 Mar 1.
6
Clinical and Therapeutic Evaluation of the Ten Most Prevalent Mutations.
Biomedicines. 2023 Jan 27;11(2):385. doi: 10.3390/biomedicines11020385.
7
Dual-AAV split prime editor corrects the mutation and phenotype in mice with inherited retinal degeneration.
Signal Transduct Target Ther. 2023 Feb 6;8(1):57. doi: 10.1038/s41392-022-01234-1.
9
Generation of nonhuman primate retinitis pigmentosa model by in situ knockout of RHO in rhesus macaque retina.
Sci Bull (Beijing). 2021 Feb 26;66(4):374-385. doi: 10.1016/j.scib.2020.09.008. Epub 2020 Sep 5.
10
Peptide-guided lipid nanoparticles deliver mRNA to the neural retina of rodents and nonhuman primates.
Sci Adv. 2023 Jan 13;9(2):eadd4623. doi: 10.1126/sciadv.add4623. Epub 2023 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验