Suppr超能文献

残余误差检测在低温电子显微镜模型中。

Residue-level error detection in cryoelectron microscopy models.

机构信息

Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.

University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany; CSSB Centre for Structural Systems Biology, Hamburg, Germany; Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany.

出版信息

Structure. 2023 Jul 6;31(7):860-869.e4. doi: 10.1016/j.str.2023.05.002. Epub 2023 May 29.

Abstract

Building accurate protein models into moderate resolution (3-5 Å) cryoelectron microscopy (cryo-EM) maps is challenging and error prone. We have developed MEDIC (Model Error Detection in Cryo-EM), a robust statistical model that identifies local backbone errors in protein structures built into cryo-EM maps by combining local fit-to-density with deep-learning-derived structural information. MEDIC is validated on a set of 28 structures that were subsequently solved to higher resolutions, where we identify the differences between low- and high-resolution structures with 68% precision and 60% recall. We additionally use this model to fix over 100 errors in 12 deposited structures and to identify errors in 4 refined AlphaFold predictions with 80% precision and 60% recall. As modelers more frequently use deep learning predictions as a starting point for refinement and rebuilding, MEDIC's ability to handle errors in structures derived from hand-building and machine learning methods makes it a powerful tool for structural biologists.

摘要

将精确的蛋白质模型构建到中等分辨率(3-5Å)的冷冻电子显微镜(cryo-EM)图谱中具有挑战性且容易出错。我们开发了 MEDIC(cryo-EM 中模型错误检测),这是一种强大的统计模型,通过将局部拟合到密度与深度学习衍生的结构信息相结合,识别构建到 cryo-EM 图谱中的蛋白质结构中的局部骨架错误。MEDIC 在一组 28 个随后以更高分辨率解决的结构上进行了验证,我们使用该模型以 68%的精度和 60%的召回率识别出低分辨率和高分辨率结构之间的差异。我们还使用此模型修复了 12 个已提交结构中的 100 多个错误,并以 80%的精度和 60%的召回率识别出 4 个经过精炼的 AlphaFold 预测中的错误。由于建模人员越来越多地将深度学习预测用作细化和重建的起点,因此 MEDIC 能够处理源自手工构建和机器学习方法的结构中的错误,这使其成为结构生物学家的强大工具。

相似文献

1
Residue-level error detection in cryoelectron microscopy models.
Structure. 2023 Jul 6;31(7):860-869.e4. doi: 10.1016/j.str.2023.05.002. Epub 2023 May 29.
2
Integrating AlphaFold and deep learning for atomistic interpretation of cryo-EM maps.
Brief Bioinform. 2023 Sep 22;24(6). doi: 10.1093/bib/bbad405.
3
Assessment of protein-protein interfaces in cryo-EM derived assemblies.
Nat Commun. 2021 Jun 7;12(1):3399. doi: 10.1038/s41467-021-23692-x.
5
Deep learning for reconstructing protein structures from cryo-EM density maps: Recent advances and future directions.
Curr Opin Struct Biol. 2023 Apr;79:102536. doi: 10.1016/j.sbi.2023.102536. Epub 2023 Feb 9.
6
Deep Learning for Validating and Estimating Resolution of Cryo-Electron Microscopy Density Maps .
Molecules. 2019 Mar 26;24(6):1181. doi: 10.3390/molecules24061181.
7
The accuracy of protein models automatically built into cryo-EM maps with ARP/wARP.
Acta Crystallogr D Struct Biol. 2021 Feb 1;77(Pt 2):142-150. doi: 10.1107/S2059798320016332. Epub 2021 Jan 26.
9
Automated model building and protein identification in cryo-EM maps.
Nature. 2024 Apr;628(8007):450-457. doi: 10.1038/s41586-024-07215-4. Epub 2024 Feb 26.
10
Protein secondary structure detection in intermediate-resolution cryo-EM maps using deep learning.
Nat Methods. 2019 Sep;16(9):911-917. doi: 10.1038/s41592-019-0500-1. Epub 2019 Jul 29.

引用本文的文献

1
AI-based quality assessment methods for protein structure models from cryo-EM.
Curr Res Struct Biol. 2025 Feb 2;9:100164. doi: 10.1016/j.crstbi.2025.100164. eCollection 2025 Jun.
3
Using deep-learning predictions reveals a large number of register errors in PDB depositions.
IUCrJ. 2024 Nov 1;11(Pt 6):938-950. doi: 10.1107/S2052252524009114.
4
The power and pitfalls of AlphaFold2 for structure prediction beyond rigid globular proteins.
Nat Chem Biol. 2024 Aug;20(8):950-959. doi: 10.1038/s41589-024-01638-w. Epub 2024 Jun 21.
5
UCSF ChimeraX: Tools for structure building and analysis.
Protein Sci. 2023 Nov;32(11):e4792. doi: 10.1002/pro.4792.
6
AQcalc: A web server that identifies weak molecular interactions in protein structures.
Protein Sci. 2023 Oct;32(10):e4762. doi: 10.1002/pro.4762.

本文引用的文献

1
StarMap: a user-friendly workflow for Rosetta-driven molecular structure refinement.
Nat Protoc. 2023 Jan;18(1):239-264. doi: 10.1038/s41596-022-00757-9. Epub 2022 Nov 2.
2
Improved AlphaFold modeling with implicit experimental information.
Nat Methods. 2022 Nov;19(11):1376-1382. doi: 10.1038/s41592-022-01645-6. Epub 2022 Oct 20.
3
Structure of cytoplasmic ring of nuclear pore complex by integrative cryo-EM and AlphaFold.
Science. 2022 Jun 10;376(6598):eabm9326. doi: 10.1126/science.abm9326.
4
Validation, analysis and annotation of cryo-EM structures.
Acta Crystallogr D Struct Biol. 2021 Sep 1;77(Pt 9):1142-1152. doi: 10.1107/S2059798321006069. Epub 2021 Aug 31.
5
Accurate prediction of protein structures and interactions using a three-track neural network.
Science. 2021 Aug 20;373(6557):871-876. doi: 10.1126/science.abj8754. Epub 2021 Jul 15.
6
Highly accurate protein structure prediction with AlphaFold.
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
7
Making the invisible enemy visible.
Nat Struct Mol Biol. 2021 May;28(5):404-408. doi: 10.1038/s41594-021-00593-7.
8
Improved protein structure refinement guided by deep learning based accuracy estimation.
Nat Commun. 2021 Feb 26;12(1):1340. doi: 10.1038/s41467-021-21511-x.
9
Cryo-EM model validation recommendations based on outcomes of the 2019 EMDataResource challenge.
Nat Methods. 2021 Feb;18(2):156-164. doi: 10.1038/s41592-020-01051-w. Epub 2021 Feb 4.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验