Suppr超能文献

使用个体指标的不完整数据估计生命必需8分。

Estimation of life's essential 8 score with incomplete data of individual metrics.

作者信息

Zheng Yi, Huang Tianyi, Guasch-Ferre Marta, Hart Jaime, Laden Francine, Chavarro Jorge, Rimm Eric, Coull Brent, Hu Hui

机构信息

Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.

Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States.

出版信息

Front Cardiovasc Med. 2023 Jul 26;10:1216693. doi: 10.3389/fcvm.2023.1216693. eCollection 2023.

Abstract

BACKGROUND

The American Heart Association's Life's Essential 8 (LE8) is an updated construct of cardiovascular health (CVH), including blood pressure, lipids, glucose, body mass index, nicotine exposure, diet, physical activity, and sleep health. It is challenging to simultaneously measure all eight metrics at multiple time points in most research and clinical settings, hindering the use of LE8 to assess individuals' overall CVH trajectories over time.

MATERIALS AND METHODS

We obtained data from 5,588 participants in the Nurses' Health Studies (NHS, NHSII) and Health Professionaĺs Follow-up Study (HPFS), and 27,194 participants in the 2005-2016 National Health and Nutrition Examination Survey (NHANES) with all eight metrics available. Individuals' overall cardiovascular health (CVH) was determined by LE8 score (0-100). CVH-related factors that are routinely collected in many settings (i.e., demographics, BMI, smoking, hypertension, hypercholesterolemia, and diabetes) were included as predictors in the base models of LE8 score, and subsequent models further included less frequently measured factors (i.e., physical activity, diet, blood pressure, and sleep health). Gradient boosting decision trees were trained with hyper-parameters tuned by cross-validations.

RESULTS

The base models trained using NHS, NHSII, and HPFS had validated root mean squared errors (RMSEs) of 8.06 (internal) and 16.72 (external). Models with additional predictors further improved performance. Consistent results were observed in models trained using NHANES. The predicted CVH scores can generate consistent effect estimates in associational studies as the observed CVH scores.

CONCLUSIONS

CVH-related factors routinely measured in many settings can be used to accurately estimate individuals' overall CVH when LE8 metrics are incomplete.

摘要

背景

美国心脏协会的生命八大要素(LE8)是心血管健康(CVH)的一种更新概念,包括血压、血脂、血糖、体重指数、尼古丁暴露、饮食、身体活动和睡眠健康。在大多数研究和临床环境中,要在多个时间点同时测量所有八项指标具有挑战性,这阻碍了使用LE8来评估个体随时间的整体CVH轨迹。

材料与方法

我们从护士健康研究(NHS、NHSII)和卫生专业人员随访研究(HPFS)的5588名参与者以及2005 - 2016年国家健康与营养检查调查(NHANES)的27194名参与者中获取了所有八项指标的数据。个体的整体心血管健康(CVH)由LE8评分(0 - 100)确定。在许多环境中常规收集的与CVH相关的因素(即人口统计学、体重指数、吸烟、高血压、高胆固醇血症和糖尿病)被纳入LE8评分的基础模型作为预测因子,后续模型进一步纳入了较少测量的因素(即身体活动、饮食、血压和睡眠健康)。梯度提升决策树通过交叉验证调整超参数进行训练。

结果

使用NHS、NHSII和HPFS训练的基础模型经验证的均方根误差(RMSE)为8.06(内部)和16.72(外部)。包含额外预测因子的模型进一步提高了性能。在使用NHANES训练的模型中观察到了一致的结果。预测的CVH评分在关联研究中可以产生与观察到的CVH评分一致的效应估计。

结论

当LE8指标不完整时,在许多环境中常规测量的与CVH相关的因素可用于准确估计个体的整体CVH。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5477/10410141/e96653272356/fcvm-10-1216693-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验