Suppr超能文献

病原体驱动的 CRISPR 筛选鉴定 TREX1 为流感病毒感染期间 DNA 自我感知的调节剂。

Pathogen-driven CRISPR screens identify TREX1 as a regulator of DNA self-sensing during influenza virus infection.

机构信息

Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA.

Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA.

出版信息

Cell Host Microbe. 2023 Sep 13;31(9):1552-1567.e8. doi: 10.1016/j.chom.2023.08.001. Epub 2023 Aug 30.

Abstract

Host:pathogen interactions dictate the outcome of infection, yet the limitations of current approaches leave large regions of this interface unexplored. Here, we develop a novel fitness-based screen that queries factors important during the middle to late stages of infection. This is achieved by engineering influenza virus to direct the screen by programming dCas9 to modulate host gene expression. Our genome-wide screen for pro-viral factors identifies the cytoplasmic DNA exonuclease TREX1. TREX1 degrades cytoplasmic DNA to prevent inappropriate innate immune activation by self-DNA. We reveal that this same process aids influenza virus replication. Infection triggers release of mitochondrial DNA into the cytoplasm, activating antiviral signaling via cGAS and STING. TREX1 metabolizes the DNA, preventing its sensing. Collectively, these data show that self-DNA is deployed to amplify innate immunity, a process tempered by TREX1. Moreover, they demonstrate the power and generality of pathogen-driven fitness-based screens to pinpoint key host regulators of infection.

摘要

宿主-病原体相互作用决定了感染的结果,但目前的方法存在局限性,使得这一界面的很大一部分未被探索。在这里,我们开发了一种新颖的基于适应性的筛选方法,用于研究感染中后期重要的因素。通过工程化流感病毒,我们实现了这一目标,通过编程 dCas9 来调节宿主基因表达,从而引导筛选。我们进行了全基因组筛选以寻找促进病毒的因素,发现了细胞质 DNA 外切酶 TREX1。TREX1 降解细胞质 DNA,防止自身 DNA 引起不适当的先天免疫激活。我们揭示了这个相同的过程有助于流感病毒的复制。感染触发线粒体 DNA 释放到细胞质中,通过 cGAS 和 STING 激活抗病毒信号。TREX1 代谢 DNA,防止其被感知。总的来说,这些数据表明,自身 DNA 被用来放大先天免疫,而 TREX1 则对其进行了调节。此外,它们还展示了病原体驱动的适应性筛选在确定感染关键宿主调节剂方面的强大功能和通用性。

相似文献

1
Pathogen-driven CRISPR screens identify TREX1 as a regulator of DNA self-sensing during influenza virus infection.
Cell Host Microbe. 2023 Sep 13;31(9):1552-1567.e8. doi: 10.1016/j.chom.2023.08.001. Epub 2023 Aug 30.
6
The Exonuclease TREX1 Constitutes an Innate Immune Checkpoint Limiting cGAS/STING-Mediated Antitumor Immunity.
Cancer Immunol Res. 2024 Jun 4;12(6):663-672. doi: 10.1158/2326-6066.CIR-23-1078.
7
Mutations in the non-catalytic polyproline motif destabilize TREX1 and amplify cGAS-STING signaling.
Hum Mol Genet. 2024 Sep 3;33(18):1555-1566. doi: 10.1093/hmg/ddae089.
8
cGAS phase separation inhibits TREX1-mediated DNA degradation and enhances cytosolic DNA sensing.
Mol Cell. 2021 Feb 18;81(4):739-755.e7. doi: 10.1016/j.molcel.2021.01.024.
9
TREX1 as a Novel Immunotherapeutic Target.
Front Immunol. 2021 Apr 1;12:660184. doi: 10.3389/fimmu.2021.660184. eCollection 2021.
10
Genome-wide CRISPR screen identifies host dependency factors for influenza A virus infection.
Nat Commun. 2020 Jan 9;11(1):164. doi: 10.1038/s41467-019-13965-x.

引用本文的文献

1
Advancements in CRISPR/Cas systems for disease treatment.
Acta Pharm Sin B. 2025 Jun;15(6):2818-2844. doi: 10.1016/j.apsb.2025.05.007. Epub 2025 May 17.
2
SARS-CoV-2 infection induces ZBP1-dependent PANoptosis in bystander cells.
Proc Natl Acad Sci U S A. 2025 Jul 15;122(28):e2500208122. doi: 10.1073/pnas.2500208122. Epub 2025 Jul 8.
4
IFIT3 RNA-binding activity promotes influenza A virus infection and translation efficiency.
J Virol. 2025 Jul 22;99(7):e0028625. doi: 10.1128/jvi.00286-25. Epub 2025 Jun 11.
6
Deep mutational scanning and CRISPR-engineered viruses: tools for evolutionary and functional genomics studies.
mSphere. 2025 May 27;10(5):e0050824. doi: 10.1128/msphere.00508-24. Epub 2025 Apr 24.
7
Influenza virus antagonizes self sensing by RIG-I to enhance viral replication.
bioRxiv. 2025 Mar 12:2025.03.12.642847. doi: 10.1101/2025.03.12.642847.
8
Cellular SLC35B4 promotes internalization during influenza A virus entry.
mBio. 2025 May 14;16(5):e0019425. doi: 10.1128/mbio.00194-25. Epub 2025 Mar 25.
9
Cytosolic nucleic acid sensing as driver of critical illness: mechanisms and advances in therapy.
Signal Transduct Target Ther. 2025 Mar 19;10(1):90. doi: 10.1038/s41392-025-02174-2.
10
IFIT3 RNA-binding activity promotes influenza A virus infection and translation efficiency.
bioRxiv. 2025 Apr 12:2025.02.17.638785. doi: 10.1101/2025.02.17.638785.

本文引用的文献

1
Alternative splicing liberates a cryptic cytoplasmic isoform of mitochondrial MECR that antagonizes influenza virus.
PLoS Biol. 2022 Dec 21;20(12):e3001934. doi: 10.1371/journal.pbio.3001934. eCollection 2022 Dec.
2
Cellular glycan modification by B3GAT1 broadly restricts influenza virus infection.
Nat Commun. 2022 Oct 29;13(1):6456. doi: 10.1038/s41467-022-34111-0.
3
Retasking of canonical antiviral factors into proviral effectors.
Curr Opin Virol. 2022 Oct;56:101271. doi: 10.1016/j.coviro.2022.101271. Epub 2022 Oct 13.
4
Influenza A virus undergoes compartmentalized replication in vivo dominated by stochastic bottlenecks.
Nat Commun. 2022 Jun 14;13(1):3416. doi: 10.1038/s41467-022-31147-0.
6
The cGAS-STING pathway drives type I IFN immunopathology in COVID-19.
Nature. 2022 Mar;603(7899):145-151. doi: 10.1038/s41586-022-04421-w. Epub 2022 Jan 19.
7
From high-throughput to therapeutic: host-directed interventions against influenza viruses.
Curr Opin Virol. 2022 Apr;53:101198. doi: 10.1016/j.coviro.2021.12.014. Epub 2022 Jan 11.
9
The type I interferonopathies: 10 years on.
Nat Rev Immunol. 2022 Aug;22(8):471-483. doi: 10.1038/s41577-021-00633-9. Epub 2021 Oct 20.
10
Pharmacological activation of STING blocks SARS-CoV-2 infection.
Sci Immunol. 2021 May 18;6(59). doi: 10.1126/sciimmunol.abi9007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验