Suppr超能文献

人工智能在阿尔茨海默病和痴呆症生物标志物发现中的应用。

Artificial intelligence for biomarker discovery in Alzheimer's disease and dementia.

机构信息

Department of Psychiatry, Oxford University, Oxford, UK.

Department of Clinical Neurosciences, Stroke Research Group, University of Cambridge, Cambridge, UK.

出版信息

Alzheimers Dement. 2023 Dec;19(12):5860-5871. doi: 10.1002/alz.13390. Epub 2023 Aug 31.

Abstract

With the increase in large multimodal cohorts and high-throughput technologies, the potential for discovering novel biomarkers is no longer limited by data set size. Artificial intelligence (AI) and machine learning approaches have been developed to detect novel biomarkers and interactions in complex data sets. We discuss exemplar uses and evaluate current applications and limitations of AI to discover novel biomarkers. Remaining challenges include a lack of diversity in the data sets available, the sheer complexity of investigating interactions, the invasiveness and cost of some biomarkers, and poor reporting in some studies. Overcoming these challenges will involve collecting data from underrepresented populations, developing more powerful AI approaches, validating the use of noninvasive biomarkers, and adhering to reporting guidelines. By harnessing rich multimodal data through AI approaches and international collaborative innovation, we are well positioned to identify clinically useful biomarkers that are accurate, generalizable, unbiased, and acceptable in clinical practice. HIGHLIGHTS: Artificial intelligence and machine learning approaches may accelerate dementia biomarker discovery. Remaining challenges include data set suitability due to size and bias in cohort selection. Multimodal data, diverse data sets, improved machine learning approaches, real-world validation, and interdisciplinary collaboration are required.

摘要

随着大型多模态队列和高通量技术的增加,发现新的生物标志物的潜力不再受数据集大小的限制。已经开发了人工智能 (AI) 和机器学习方法来检测复杂数据集中的新生物标志物和相互作用。我们讨论了范例应用,并评估了 AI 当前在发现新生物标志物方面的应用和局限性。仍然存在的挑战包括可用数据集缺乏多样性、研究相互作用的复杂性、一些生物标志物的侵入性和成本以及一些研究报告的不完善。克服这些挑战将涉及从代表性不足的人群中收集数据、开发更强大的 AI 方法、验证非侵入性生物标志物的使用以及遵守报告指南。通过利用 AI 方法和国际合作创新丰富的多模态数据,我们有很好的机会识别出在临床实践中准确、可推广、无偏倚且可接受的临床有用生物标志物。 要点:人工智能和机器学习方法可能会加速痴呆症生物标志物的发现。仍然存在的挑战包括由于队列选择的大小和偏差导致数据集适用性问题。需要多模态数据、多样化数据集、改进的机器学习方法、真实世界验证和跨学科合作。

相似文献

1
Artificial intelligence for biomarker discovery in Alzheimer's disease and dementia.
Alzheimers Dement. 2023 Dec;19(12):5860-5871. doi: 10.1002/alz.13390. Epub 2023 Aug 31.
2
Artificial intelligence for dementia genetics and omics.
Alzheimers Dement. 2023 Dec;19(12):5905-5921. doi: 10.1002/alz.13427. Epub 2023 Aug 22.
3
Artificial Intelligence and Technology Collaboratories: Innovating aging research and Alzheimer's care.
Alzheimers Dement. 2024 Apr;20(4):3074-3079. doi: 10.1002/alz.13710. Epub 2024 Feb 7.
4
Harnessing the potential of machine learning and artificial intelligence for dementia research.
Brain Inform. 2023 Feb 24;10(1):6. doi: 10.1186/s40708-022-00183-3.
5
Artificial intelligence to revolutionize IBD clinical trials: a comprehensive review.
Therap Adv Gastroenterol. 2025 Feb 23;18:17562848251321915. doi: 10.1177/17562848251321915. eCollection 2025.
6
Artificial intelligence for diagnostic and prognostic neuroimaging in dementia: A systematic review.
Alzheimers Dement. 2023 Dec;19(12):5885-5904. doi: 10.1002/alz.13412. Epub 2023 Aug 10.
9
Artificial intelligence for dementia prevention.
Alzheimers Dement. 2023 Dec;19(12):5952-5969. doi: 10.1002/alz.13463. Epub 2023 Oct 14.

引用本文的文献

1
The computational model lifecycle: Opportunities and challenges for computational medicine in the healthcare ecosystem.
Sci Prog. 2025 Jul-Sep;108(3):368504251344145. doi: 10.1177/00368504251344145. Epub 2025 Sep 1.
7
Alzheimer's disease digital biomarkers multidimensional landscape and AI model scoping review.
NPJ Digit Med. 2025 Jun 16;8(1):366. doi: 10.1038/s41746-025-01640-z.
10
Transcriptome Derived Artificial neural networks predict PRRC2A as a potent biomarker for epilepsy.
J Genet Eng Biotechnol. 2025 Jun;23(2):100503. doi: 10.1016/j.jgeb.2025.100503. Epub 2025 May 12.

本文引用的文献

1
Blood biomarkers for Alzheimer's disease in clinical practice and trials.
Nat Aging. 2023 May;3(5):506-519. doi: 10.1038/s43587-023-00403-3. Epub 2023 May 18.
2
Step by step: towards a better understanding of the genetic architecture of Alzheimer's disease.
Mol Psychiatry. 2023 Jul;28(7):2716-2727. doi: 10.1038/s41380-023-02076-1. Epub 2023 May 2.
3
4
Deep Neural Networks and Tabular Data: A Survey.
IEEE Trans Neural Netw Learn Syst. 2024 Jun;35(6):7499-7519. doi: 10.1109/TNNLS.2022.3229161. Epub 2024 Jun 3.
5
Plasma phospho-tau in Alzheimer's disease: towards diagnostic and therapeutic trial applications.
Mol Neurodegener. 2023 Mar 16;18(1):18. doi: 10.1186/s13024-023-00605-8.
7
Multi-task deep autoencoder to predict Alzheimer's disease progression using temporal DNA methylation data in peripheral blood.
Comput Struct Biotechnol J. 2022 Oct 23;20:5761-5774. doi: 10.1016/j.csbj.2022.10.016. eCollection 2022.
8
Comparison of Machine Learning-based Approaches to Predict the Conversion to Alzheimer's Disease from Mild Cognitive Impairment.
Neuroscience. 2023 Mar 15;514:143-152. doi: 10.1016/j.neuroscience.2023.01.029. Epub 2023 Feb 2.
9
Ocular Biomarkers for Alzheimer Disease Dementia: An Umbrella Review of Systematic Reviews and Meta-analyses.
JAMA Ophthalmol. 2023 Jan 1;141(1):84-91. doi: 10.1001/jamaophthalmol.2022.4845.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验