Suppr超能文献

全基因组 CRISPR 筛选鉴定出多个增强 KRASG12C 抑制剂疗效的合成致死靶点。

Genome-Wide CRISPR Screens Identify Multiple Synthetic Lethal Targets That Enhance KRASG12C Inhibitor Efficacy.

机构信息

Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, New York.

Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, New York.

出版信息

Cancer Res. 2023 Dec 15;83(24):4095-4111. doi: 10.1158/0008-5472.CAN-23-2729.

Abstract

UNLABELLED

Non-small lung cancers (NSCLC) frequently (∼30%) harbor KRAS driver mutations, half of which are KRASG12C. KRAS-mutant NSCLC with comutated STK11 and/or KEAP1 is particularly refractory to conventional, targeted, and immune therapy. Development of KRASG12C inhibitors (G12Ci) provided a major therapeutic advance, but resistance still limits their efficacy. To identify genes whose deletion augments efficacy of the G12Cis adagrasib (MRTX-849) or adagrasib plus TNO155 (SHP2i), we performed genome-wide CRISPR/Cas9 screens on KRAS/STK11-mutant NSCLC lines. Recurrent, potentially targetable, synthetic lethal (SL) genes were identified, including serine-threonine kinases, tRNA-modifying and proteoglycan synthesis enzymes, and YAP/TAZ/TEAD pathway components. Several SL genes were confirmed by siRNA/shRNA experiments, and the YAP/TAZ/TEAD pathway was extensively validated in vitro and in mice. Mechanistic studies showed that G12Ci treatment induced gene expression of RHO paralogs and activators, increased RHOA activation, and evoked ROCK-dependent nuclear translocation of YAP. Mice and patients with acquired G12Ci- or G12Ci/SHP2i-resistant tumors showed strong overlap with SL pathways, arguing for the relevance of the screen results. These findings provide a landscape of potential targets for future combination strategies, some of which can be tested rapidly in the clinic.

SIGNIFICANCE

Identification of synthetic lethal genes with KRASG12C using genome-wide CRISPR/Cas9 screening and credentialing of the ability of TEAD inhibition to enhance KRASG12C efficacy provides a roadmap for combination strategies. See related commentary by Johnson and Haigis, p. 4005.

摘要

未加标签

非小细胞肺癌(NSCLC)经常(约 30%)携带 KRAS 驱动突变,其中一半是 KRASG12C。同时发生 STK11 和/或 KEAP1 突变的 KRAS 突变 NSCLC 对传统、靶向和免疫治疗特别耐药。KRASG12C 抑制剂(G12Ci)的开发提供了重大的治疗进展,但耐药性仍然限制了它们的疗效。为了确定删除哪些基因可以增强 G12Cis 阿达格拉西布(MRTX-849)或阿达格拉西布加 TNO155(SHP2i)的疗效,我们对 KRAS/STK11 突变 NSCLC 细胞系进行了全基因组 CRISPR/Cas9 筛选。鉴定出了反复出现的、潜在可靶向的、合成致死(SL)基因,包括丝氨酸-苏氨酸激酶、tRNA 修饰和蛋白聚糖合成酶,以及 YAP/TAZ/TEAD 途径成分。通过 siRNA/shRNA 实验验证了几个 SL 基因,并且在体外和小鼠中广泛验证了 YAP/TAZ/TEAD 途径。机制研究表明,G12Ci 治疗诱导了 RHO 同源物和激活剂的基因表达,增加了 RHOA 激活,并引发了 YAP 的 ROCK 依赖性核转位。获得 G12Ci 或 G12Ci/SHP2i 耐药肿瘤的小鼠和患者与 SL 途径有很强的重叠,这表明筛选结果具有相关性。这些发现为未来的联合策略提供了潜在靶点的全景图,其中一些可以在临床上迅速进行测试。

意义

使用全基因组 CRISPR/Cas9 筛选鉴定 KRASG12C 的合成致死基因,并验证 TEAD 抑制增强 KRASG12C 疗效的能力,为联合策略提供了路线图。请参阅 Johnson 和 Haigis 的相关评论,第 4005 页。

相似文献

1
Genome-Wide CRISPR Screens Identify Multiple Synthetic Lethal Targets That Enhance KRASG12C Inhibitor Efficacy.
Cancer Res. 2023 Dec 15;83(24):4095-4111. doi: 10.1158/0008-5472.CAN-23-2729.
2
SOS1 Inhibition Enhances the Efficacy of KRASG12C Inhibitors and Delays Resistance in Lung Adenocarcinoma.
Cancer Res. 2025 Jan 2;85(1):118-133. doi: 10.1158/0008-5472.CAN-23-3256.
3
TEAD Inhibition Overcomes YAP1/TAZ-Driven Primary and Acquired Resistance to KRASG12C Inhibitors.
Cancer Res. 2023 Dec 15;83(24):4112-4129. doi: 10.1158/0008-5472.CAN-23-2994.
4
CTLA4 blockade abrogates KEAP1/STK11-related resistance to PD-(L)1 inhibitors.
Nature. 2024 Nov;635(8038):462-471. doi: 10.1038/s41586-024-07943-7. Epub 2024 Oct 9.
7
Adagrasib in the treatment of colorectal cancer.
Future Oncol. 2025 Jul 6:1-11. doi: 10.1080/14796694.2025.2524311.
9
Mechanisms of Response and Tolerance to Active RAS Inhibition in KRAS-Mutant Non-Small Cell Lung Cancer.
Cancer Discov. 2024 Nov 1;14(11):2183-2208. doi: 10.1158/2159-8290.CD-24-0421.
10
Systemic treatments for metastatic cutaneous melanoma.
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.

引用本文的文献

2
YAP/TAZ Promote GLUT1 Expression and Are Associated with Prognosis in Endometrial Cancer.
Cancers (Basel). 2025 Aug 1;17(15):2554. doi: 10.3390/cancers17152554.
3
Acute myeloid leukemia with plasmacytoid dendritic cell proliferation: A case report and literature review.
Oncol Lett. 2025 Jul 22;30(4):456. doi: 10.3892/ol.2025.15202. eCollection 2025 Oct.
4
Drivers of Pancreatic Cancer: Beyond the Big 4.
Cancers (Basel). 2025 Jul 15;17(14):2354. doi: 10.3390/cancers17142354.
6
Precision immune regulation in KRAS-mutated cancers: the final piece of the puzzle?
J Exp Clin Cancer Res. 2025 Jul 3;44(1):189. doi: 10.1186/s13046-025-03444-1.
7
A degradable form of polyoma small T antigen reveals the high specificity of TAZ in regulating gene expression.
Proc Natl Acad Sci U S A. 2025 Jul 8;122(27):e2426862122. doi: 10.1073/pnas.2426862122. Epub 2025 Jul 3.
8
Targeting the Hippo pathway in cancer.
Nat Rev Drug Discov. 2025 Jun 30. doi: 10.1038/s41573-025-01234-0.
9
A first-in-class EGFR-directed KRAS G12V selective inhibitor.
Cancer Cell. 2025 Jun 16. doi: 10.1016/j.ccell.2025.05.016.
10
A genome-wide in vivo CRISPR screen identifies neuroprotective strategies in the mouse and human retina.
bioRxiv. 2025 Mar 24:2025.03.22.644712. doi: 10.1101/2025.03.22.644712.

本文引用的文献

1
Insights into recent findings and clinical application of YAP and TAZ in cancer.
Nat Rev Cancer. 2023 Aug;23(8):512-525. doi: 10.1038/s41568-023-00579-1. Epub 2023 Jun 12.
2
An allosteric pan-TEAD inhibitor blocks oncogenic YAP/TAZ signaling and overcomes KRAS G12C inhibitor resistance.
Nat Cancer. 2023 Jun;4(6):812-828. doi: 10.1038/s43018-023-00577-0. Epub 2023 Jun 5.
5
Comutations and KRASG12C Inhibitor Efficacy in Advanced NSCLC.
Cancer Discov. 2023 Jul 7;13(7):1556-1571. doi: 10.1158/2159-8290.CD-22-1420.
6
7
Therapeutic targeting of TEAD transcription factors in cancer.
Trends Biochem Sci. 2023 May;48(5):450-462. doi: 10.1016/j.tibs.2022.12.005. Epub 2023 Jan 26.
8
Preclinical to clinical utility of ROCK inhibitors in cancer.
Trends Cancer. 2023 Mar;9(3):250-263. doi: 10.1016/j.trecan.2022.12.001. Epub 2023 Jan 2.
9
YAP/TAZ as master regulators in cancer: modulation, function and therapeutic approaches.
Nat Cancer. 2023 Jan;4(1):9-26. doi: 10.1038/s43018-022-00473-z. Epub 2022 Dec 23.
10
KMT2D deficiency drives lung squamous cell carcinoma and hypersensitivity to RTK-RAS inhibition.
Cancer Cell. 2023 Jan 9;41(1):88-105.e8. doi: 10.1016/j.ccell.2022.11.015. Epub 2022 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验