Zhang Weimin, Lazar-Stefanita Luciana, Yamashita Hitoyoshi, Shen Michael J, Mitchell Leslie A, Kurasawa Hikaru, Lobzaev Evgenii, Fanfani Viola, Haase Max A B, Sun Xiaoji, Jiang Qingwen, Goldberg Gregory W, Ichikawa David M, Lauer Stephanie L, McCulloch Laura H, Easo Nicole, Lin S Jiaming, Camellato Brendan R, Zhu Yinan, Cai Jitong, Xu Zhuwei, Zhao Yu, Sacasa Maya, Noyes Marcus B, Bader Joel S, Deutsch Samuel, Stracquadanio Giovanni, Aizawa Yasunori, Dai Junbiao, Boeke Jef D
Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.
School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.
Mol Cell. 2023 Dec 7;83(23):4424-4437.e5. doi: 10.1016/j.molcel.2023.10.015. Epub 2023 Nov 8.
Whether synthetic genomes can power life has attracted broad interest in the synthetic biology field. Here, we report de novo synthesis of the largest eukaryotic chromosome thus far, synIV, a 1,454,621-bp yeast chromosome resulting from extensive genome streamlining and modification. We developed megachunk assembly combined with a hierarchical integration strategy, which significantly increased the accuracy and flexibility of synthetic chromosome construction. Besides the drastic sequence changes, we further manipulated the 3D structure of synIV to explore spatial gene regulation. Surprisingly, we found few gene expression changes, suggesting that positioning inside the yeast nucleoplasm plays a minor role in gene regulation. Lastly, we tethered synIV to the inner nuclear membrane via its hundreds of loxPsym sites and observed transcriptional repression of the entire chromosome, demonstrating chromosome-wide transcription manipulation without changing the DNA sequences. Our manipulation of the spatial structure of synIV sheds light on higher-order architectural design of the synthetic genomes.
合成基因组能否驱动生命活动已在合成生物学领域引起了广泛关注。在此,我们报告了迄今为止最大的真核染色体synIV的从头合成,这是一条由1,454,621个碱基对组成的酵母染色体,通过广泛的基因组精简和修饰而产生。我们开发了巨型片段组装与分层整合策略相结合的方法,这显著提高了合成染色体构建的准确性和灵活性。除了剧烈的序列变化外,我们还进一步操纵了synIV的三维结构以探索空间基因调控。令人惊讶的是,我们发现基因表达变化很少,这表明位于酵母核质内部在基因调控中起次要作用。最后,我们通过其数百个loxP对称位点将synIV连接到内核膜上,并观察到整个染色体的转录抑制,这证明了在不改变DNA序列的情况下对全染色体转录进行操纵。我们对synIV空间结构的操纵为合成基因组的高阶架构设计提供了启示。