Suppr超能文献

烯烃与羧酸的光催化氢氟烷基化反应。

Photocatalytic hydrofluoroalkylation of alkenes with carboxylic acids.

作者信息

Bian Kang-Jie, Lu Yen-Chu, Nemoto David, Kao Shih-Chieh, Chen Xiaowei, West Julian G

机构信息

Department of Chemistry, Rice University, Houston, TX, USA.

出版信息

Nat Chem. 2023 Dec;15(12):1683-1692. doi: 10.1038/s41557-023-01365-0. Epub 2023 Nov 13.

Abstract

Incorporation of fluoroalkyl motifs in pharmaceuticals can enhance the therapeutic profiles of the parent molecules. The hydrofluoroalkylation of alkenes has emerged as a promising route to diverse fluoroalkylated compounds; however, current methods require superstoichiometric oxidants, expensive/oxidative fluoroalkylating reagents and precious metals, and often exhibit limited scope, making a universal protocol that addresses these limitations highly desirable. Here we report the hydrofluoroalkylation of alkenes with cheap, abundant and available fluoroalkyl carboxylic acids as the sole reagents. Hydrotrifluoro-, difluoro-, monofluoro- and perfluoroalkylation are all demonstrated, with broad scope, mild conditions (redox neutral) and potential for late-stage modification of bioactive molecules. Critical to success is overcoming the exceedingly high redox potential of feedstock fluoroalkyl carboxylic acids such as trifluoroacetic acid by leveraging cooperative earth-abundant, inexpensive iron and redox-active thiol catalysis, enabling these reagents to be directly used as hydroperfluoroalkylation donors without pre-activation. Preliminary mechanistic studies support the radical nature of this cooperative process.

摘要

在药物中引入氟烷基基团可以增强母体分子的治疗特性。烯烃的氢氟烷基化已成为合成多种氟烷基化化合物的一条有前景的途径;然而,目前的方法需要使用超化学计量的氧化剂、昂贵的/氧化性氟烷基化试剂和贵金属,并且通常适用范围有限,因此非常需要一种能够解决这些局限性的通用方法。在此,我们报道了以廉价、丰富且易得的氟烷基羧酸作为唯一试剂实现烯烃的氢氟烷基化反应。氢三氟烷基化、二氟烷基化、单氟烷基化和全氟烷基化均已得到证实,该反应具有广泛的适用范围、温和的条件(氧化还原中性)以及对生物活性分子进行后期修饰的潜力。成功的关键在于利用储量丰富、价格低廉的铁和具有氧化还原活性的硫醇协同催化,克服原料氟烷基羧酸(如三氟乙酸)极高的氧化还原电位,使这些试剂无需预活化即可直接用作全氟烷基化氢供体。初步的机理研究支持了这一协同过程的自由基性质。

相似文献

1
Photocatalytic hydrofluoroalkylation of alkenes with carboxylic acids.
Nat Chem. 2023 Dec;15(12):1683-1692. doi: 10.1038/s41557-023-01365-0. Epub 2023 Nov 13.
2
Diversified Fluoroalkylation of Alkenes Using Quaternary Fluoroalkyl Alcohols as the Fluoroalkylating Reagents.
Adv Sci (Weinh). 2025 Feb;12(6):e2408781. doi: 10.1002/advs.202408781. Epub 2024 Dec 24.
4
Remote Functionalization of Inert C(sp)-H Bonds via Dual Catalysis Driven by Alkene Hydrofluoroalkylation Using Industrial Feedstocks.
Org Lett. 2024 Oct 4;26(39):8278-8283. doi: 10.1021/acs.orglett.4c02901. Epub 2024 Sep 19.
5
α-Amino Acids and Peptides as Bifunctional Reagents: Carbocarboxylation of Activated Alkenes via Recycling CO.
J Am Chem Soc. 2021 Feb 24;143(7):2812-2821. doi: 10.1021/jacs.0c11896. Epub 2021 Feb 9.
6
Chemoselective Decarboxylative Protonation Enabled by Cooperative Earth-Abundant Element Catalysis.
Angew Chem Int Ed Engl. 2023 Jan 16;62(3):e202213055. doi: 10.1002/anie.202213055. Epub 2022 Dec 8.
7
Copper-Catalyzed Decarboxylative Difluoroalkylation and Perfluoroalkylation of α,β-Unsaturated Carboxylic Acids.
J Org Chem. 2017 Jan 6;82(1):597-605. doi: 10.1021/acs.joc.6b02613. Epub 2016 Dec 12.
8
Photocatalytic, modular difunctionalization of alkenes enabled by ligand-to-metal charge transfer and radical ligand transfer.
Chem Sci. 2023 Nov 24;15(1):124-133. doi: 10.1039/d3sc05231a. eCollection 2023 Dec 20.
9
Modular Difunctionalization of Unactivated Alkenes through Bio-Inspired Radical Ligand Transfer Catalysis.
J Am Chem Soc. 2022 Jul 6;144(26):11810-11821. doi: 10.1021/jacs.2c04188. Epub 2022 Jun 21.
10
Carboxylic Acids as Adaptive Functional Groups in Metallaphotoredox Catalysis.
Acc Chem Res. 2022 Dec 6;55(23):3481-3494. doi: 10.1021/acs.accounts.2c00607. Epub 2022 Nov 22.

引用本文的文献

1
Photocatalytic anti-Markovnikov hydro- and haloazidation of alkenes.
Nat Commun. 2025 Aug 25;16(1):7906. doi: 10.1038/s41467-025-63203-w.
2
Anti-Markovnikov hydro- and deuterochlorination of unsaturated hydrocarbons using iron photocatalysis.
Nat Synth. 2025 Mar;4(3):314-326. doi: 10.1038/s44160-024-00698-z. Epub 2025 Jan 2.
5
Mixed-Metal Ce-Zr-Mn Clusters as Photo-Catalysts for Decarboxylative Functionalization of Carboxylic Acids.
Angew Chem Int Ed Engl. 2025 Aug 11;64(33):e202505639. doi: 10.1002/anie.202505639. Epub 2025 Jun 18.
6
Advances in photocatalytic research on decarboxylative trifluoromethylation of trifluoroacetic acid and derivatives.
Front Chem. 2025 May 14;13:1602003. doi: 10.3389/fchem.2025.1602003. eCollection 2025.
7
Electrochemical oxidative CF radical-induced lactonization and etherification of terminal and internal alkenes.
RSC Adv. 2025 May 9;15(19):15302-15309. doi: 10.1039/d5ra01852h. eCollection 2025 May 6.
8
Application of Lead-Free Metal Halide Perovskite Heterojunctions for the Carbohalogenation of C-C Multiple Bonds.
Org Lett. 2025 Apr 11;27(14):3667-3672. doi: 10.1021/acs.orglett.5c00780. Epub 2025 Apr 1.
9
Molecular Design Principles for Photoactive Transition Metal Complexes: A Guide for "Photo-Motivated" Chemists.
J Am Chem Soc. 2025 Apr 9;147(14):11608-11624. doi: 10.1021/jacs.5c02096. Epub 2025 Mar 27.
10
Catalysis in the Excited State: Bringing Innate Transition Metal Photochemistry into Play.
ACS Catal. 2025 Mar 5;15(6):4665-4680. doi: 10.1021/acscatal.4c07962. eCollection 2025 Mar 21.

本文引用的文献

1
Iron Photoredox Catalysis-Past, Present, and Future.
J Am Chem Soc. 2023 May 3;145(17):9369-9388. doi: 10.1021/jacs.3c01000. Epub 2023 Apr 20.
3
Chemoselective Decarboxylative Protonation Enabled by Cooperative Earth-Abundant Element Catalysis.
Angew Chem Int Ed Engl. 2023 Jan 16;62(3):e202213055. doi: 10.1002/anie.202213055. Epub 2022 Dec 8.
4
Visible-Light-Induced Decarboxylative Fluorination of Aliphatic Carboxylic Acids Catalyzed by Iron.
Org Lett. 2022 Aug 19;24(32):5972-5976. doi: 10.1021/acs.orglett.2c02242. Epub 2022 Aug 11.
5
Difluoromethylation of Unactivated Alkenes Using Freon-22 through Tertiary Amine-Borane-Triggered Halogen Atom Transfer.
J Am Chem Soc. 2022 Aug 10;144(31):14288-14296. doi: 10.1021/jacs.2c05356. Epub 2022 Jul 27.
6
Catalytic Hydrodifluoroalkylation of Unactivated Olefins.
Org Lett. 2022 Jul 22;24(28):5109-5114. doi: 10.1021/acs.orglett.2c01941. Epub 2022 Jul 10.
7
A General and Efficient Solution to Monofluoroalkylation: Divergent Synthesis of Aliphatic Monofluorides with Modular Synthetic Scaffolds.
Angew Chem Int Ed Engl. 2022 Sep 5;61(36):e202208938. doi: 10.1002/anie.202208938. Epub 2022 Jul 25.
8
A Unified Approach to Decarboxylative Halogenation of (Hetero)aryl Carboxylic Acids.
J Am Chem Soc. 2022 May 11;144(18):8296-8305. doi: 10.1021/jacs.2c02392. Epub 2022 Apr 29.
9
Decarboxylative cross-nucleophile coupling via ligand-to-metal charge transfer photoexcitation of Cu(II) carboxylates.
Nat Chem. 2022 Jan;14(1):94-99. doi: 10.1038/s41557-021-00834-8. Epub 2022 Jan 5.
10
Photochemical C-F Activation Enables Defluorinative Alkylation of Trifluoroacetates and -Acetamides.
J Am Chem Soc. 2021 Dec 1;143(47):19648-19654. doi: 10.1021/jacs.1c11059. Epub 2021 Nov 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验