Suppr超能文献

染色质重塑因子在发育和疾病中的特定功能。

Context-specific functions of chromatin remodellers in development and disease.

机构信息

Department of Pathology, Stanford University, Stanford, CA, USA.

Department of Chemical Engineering, Stanford University, Stanford, CA, USA.

出版信息

Nat Rev Genet. 2024 May;25(5):340-361. doi: 10.1038/s41576-023-00666-x. Epub 2023 Nov 24.

Abstract

Chromatin remodellers were once thought to be highly redundant and nonspecific in their actions. However, recent human genetic studies demonstrate remarkable biological specificity and dosage sensitivity of the thirty-two adenosine triphosphate (ATP)-dependent chromatin remodellers encoded in the human genome. Mutations in remodellers produce many human developmental disorders and cancers, motivating efforts to investigate their distinct functions in biologically relevant settings. Exquisitely specific biological functions seem to be an emergent property in mammals, and in many cases are based on the combinatorial assembly of subunits and the generation of stable, composite surfaces. Critical interactions between remodelling complex subunits, the nucleosome and other transcriptional regulators are now being defined from structural and biochemical studies. In addition, in vivo analyses of remodellers at relevant genetic loci have provided minute-by-minute insights into their dynamics. These studies are proposing new models for the determinants of remodeller localization and function on chromatin.

摘要

染色质重塑因子曾经被认为在其作用上具有高度冗余性和非特异性。然而,最近的人类遗传学研究表明,人类基因组中编码的三十二个三磷酸腺苷(ATP)依赖性染色质重塑因子具有显著的生物学特异性和剂量敏感性。重塑因子的突变会导致许多人类发育障碍和癌症,这促使人们努力在生物学相关环境中研究它们的不同功能。在哺乳动物中,精细的特异性生物学功能似乎是一种新兴特性,在许多情况下,这种特性是基于亚基的组合组装和稳定的复合表面的生成。现在,从结构和生化研究中定义了重塑复合物亚基、核小体和其他转录调节剂之间的关键相互作用。此外,在相关遗传位点对重塑因子进行体内分析,为它们在染色质上的动态提供了每分钟的见解。这些研究提出了重塑因子在染色质上定位和功能决定因素的新模型。

相似文献

1
Context-specific functions of chromatin remodellers in development and disease.
Nat Rev Genet. 2024 May;25(5):340-361. doi: 10.1038/s41576-023-00666-x. Epub 2023 Nov 24.
2
ISWI chromatin remodellers sense nucleosome modifications to determine substrate preference.
Nature. 2017 Aug 31;548(7669):607-611. doi: 10.1038/nature23671. Epub 2017 Aug 2.
3
Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells.
Nature. 2016 Feb 4;530(7588):113-6. doi: 10.1038/nature16505. Epub 2016 Jan 27.
4
Energy-driven genome regulation by ATP-dependent chromatin remodellers.
Nat Rev Mol Cell Biol. 2024 Apr;25(4):309-332. doi: 10.1038/s41580-023-00683-y. Epub 2023 Dec 11.
5
Remodelling chromatin to shape development of plants.
Exp Cell Res. 2014 Feb 1;321(1):40-6. doi: 10.1016/j.yexcr.2013.11.010. Epub 2013 Nov 20.
6
Integrated epigenomic analysis stratifies chromatin remodellers into distinct functional groups.
Epigenetics Chromatin. 2019 Feb 12;12(1):12. doi: 10.1186/s13072-019-0258-9.
7
Chromatin remodelling in mammalian cells by ISWI-type complexes--where, when and why?
FEBS J. 2011 Oct;278(19):3608-18. doi: 10.1111/j.1742-4658.2011.08282.x. Epub 2011 Sep 2.
8
The INO80 remodeller in transcription, replication and repair.
Philos Trans R Soc Lond B Biol Sci. 2017 Oct 5;372(1731). doi: 10.1098/rstb.2016.0290.
9
Structure of human chromatin-remodelling PBAF complex bound to a nucleosome.
Nature. 2022 May;605(7908):166-171. doi: 10.1038/s41586-022-04658-5. Epub 2022 Apr 27.
10
ATP-Dependent Chromatin Remodellers in Inner Ear Development.
Cells. 2023 Feb 7;12(4):532. doi: 10.3390/cells12040532.

引用本文的文献

1
Mutual Antagonism Between PRC1 Condensates and SWI/SNF in Chromatin Regulation.
bioRxiv. 2025 Aug 26:2025.08.25.672128. doi: 10.1101/2025.08.25.672128.
4
Nonchromatin regulatory functions of the histone variant H2A.B in SWI/SNF genomic deposition.
Sci Adv. 2025 Jul 25;11(30):eadx1568. doi: 10.1126/sciadv.adx1568.
5
BAHCC1 promotes gene expression in neuronal cells by antagonizing SIN3A-HDAC1.
Nucleic Acids Res. 2025 Jul 19;53(14). doi: 10.1093/nar/gkaf650.
7
Widespread impact of nucleosome remodelers on transcription at cis-regulatory elements.
Cell Rep. 2025 Jun 24;44(6):115767. doi: 10.1016/j.celrep.2025.115767. Epub 2025 May 30.
8
CRISPR screen decodes SWI/SNF chromatin remodeling complex assembly.
Nat Commun. 2025 May 30;16(1):5011. doi: 10.1038/s41467-025-60424-x.

本文引用的文献

1
Landscape of mSWI/SNF chromatin remodeling complex perturbations in neurodevelopmental disorders.
Nat Genet. 2023 Aug;55(8):1400-1412. doi: 10.1038/s41588-023-01451-6. Epub 2023 Jul 27.
2
Rewiring cancer drivers to activate apoptosis.
Nature. 2023 Aug;620(7973):417-425. doi: 10.1038/s41586-023-06348-2. Epub 2023 Jul 26.
3
4
Discovery of High-Affinity Small-Molecule Binders of the Epigenetic Reader YEATS4.
J Med Chem. 2023 Jan 12;66(1):460-472. doi: 10.1021/acs.jmedchem.2c01421. Epub 2022 Dec 23.
5
Rescue of deficits by Brwd1 copy number restoration in the Ts65Dn mouse model of Down syndrome.
Nat Commun. 2022 Oct 26;13(1):6384. doi: 10.1038/s41467-022-34200-0.
6
Selective and Cell-Active PBRM1 Bromodomain Inhibitors Discovered through NMR Fragment Screening.
J Med Chem. 2022 Oct 27;65(20):13714-13735. doi: 10.1021/acs.jmedchem.2c00864. Epub 2022 Oct 13.
7
A selective and orally bioavailable VHL-recruiting PROTAC achieves SMARCA2 degradation in vivo.
Nat Commun. 2022 Oct 10;13(1):5969. doi: 10.1038/s41467-022-33430-6.
8
cBAF complex components and MYC cooperate early in CD8 T cell fate.
Nature. 2022 Jul;607(7917):135-141. doi: 10.1038/s41586-022-04849-0. Epub 2022 Jun 22.
9
Single-cell transcriptomics identifies potential cells of origin of MYC rhabdoid tumors.
Nat Commun. 2022 Mar 22;13(1):1544. doi: 10.1038/s41467-022-29152-4.
10
Design, Synthesis, and Biological Evaluation of the First Inhibitors of Oncogenic CHD1L.
J Med Chem. 2022 Mar 10;65(5):3943-3961. doi: 10.1021/acs.jmedchem.1c01778. Epub 2022 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验