Suppr超能文献

一种用于实现Fenton反应催化剂上高金属负载量的聚合物 tethering 策略。

A polymer tethering strategy to achieve high metal loading on catalysts for Fenton reactions.

作者信息

Wang Lixin, Rao Longjun, Ran Maoxi, Shentu Qikai, Wu Zenglong, Song Wenkai, Zhang Ziwei, Li Hao, Yao Yuyuan, Lv Weiyang, Xing Mingyang

机构信息

National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China.

National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.

出版信息

Nat Commun. 2023 Nov 29;14(1):7841. doi: 10.1038/s41467-023-43678-1.

Abstract

The development of heterogenous catalysts based on the synthesis of 2D carbon-supported metal nanocatalysts with high metal loading and dispersion is important. However, such practices remain challenging to develop. Here, we report a self-polymerization confinement strategy to fabricate a series of ultrafine metal embedded N-doped carbon nanosheets (M@N-C) with loadings of up to 30 wt%. Systematic investigation confirms that abundant catechol groups for anchoring metal ions and entangled polymer networks with the stable coordinate environment are essential for realizing high-loading M@N-C catalysts. As a demonstration, Fe@N-C exhibits the dual high-efficiency performance in Fenton reaction with both impressive catalytic activity (0.818 min) and HO utilization efficiency (84.1%) using sulfamethoxazole as the probe, which has not yet been achieved simultaneously. Theoretical calculations reveal that the abundant Fe nanocrystals increase the electron density of the N-doped carbon frameworks, thereby facilitating the continuous generation of long-lasting surface-bound OH through lowering the energy barrier for HO activation. This facile and universal strategy paves the way for the fabrication of diverse high-loading heterogeneous catalysts for broad applications.

摘要

基于合成具有高金属负载量和分散性的二维碳负载金属纳米催化剂来开发多相催化剂具有重要意义。然而,此类方法的开发仍然具有挑战性。在此,我们报告了一种自聚合限制策略,以制备一系列负载量高达30 wt%的超细金属嵌入氮掺杂碳纳米片(M@N-C)。系统研究证实,用于锚定金属离子的大量儿茶酚基团以及具有稳定配位环境的缠结聚合物网络对于实现高负载量的M@N-C催化剂至关重要。作为例证,以磺胺甲恶唑为探针,Fe@N-C在芬顿反应中展现出双重高效性能,兼具令人印象深刻的催化活性(0.818分钟)和HO利用效率(84.1%),而这是尚未同时实现的。理论计算表明,大量的铁纳米晶体增加了氮掺杂碳骨架的电子密度,从而通过降低HO活化的能垒促进了持久表面结合OH的持续生成。这种简便通用的策略为制备用于广泛应用的各种高负载多相催化剂铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10687042/364c33ab8c2e/41467_2023_43678_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验