Department of Biotechnology and Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA 91766.
Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766.
Proc Natl Acad Sci U S A. 2023 Dec 12;120(50):e2310933120. doi: 10.1073/pnas.2310933120. Epub 2023 Dec 7.
Mechanosensitive PIEZO channels constitute potential pharmacological targets for multiple clinical conditions, spurring the search for potent chemical PIEZO modulators. Among them is Yoda1, a widely used synthetic small molecule PIEZO1 activator discovered through cell-based high-throughput screening. Yoda1 is thought to bind to PIEZO1's mechanosensory arm domain, sandwiched between two transmembrane regions near the channel pore. However, how the binding of Yoda1 to this region promotes channel activation remains elusive. Here, we first demonstrate that cross-linking PIEZO1 repeats A and B with disulfide bridges reduces the effects of Yoda1 in a redox-dependent manner, suggesting that Yoda1 acts by perturbing the contact between these repeats. Using molecular dynamics-based absolute binding free energy simulations, we next show that Yoda1 preferentially occupies a deeper, amphipathic binding site with higher affinity in PIEZO1 open state. Using Yoda1's binding poses in open and closed states, relative binding free energy simulations were conducted in the membrane environment, recapitulating structure-activity relationships of known Yoda1 analogs. Through virtual screening of an 8 million-compound library using computed fragment maps of the Yoda1 binding site, we subsequently identified two chemical scaffolds with agonist activity toward PIEZO1. This study supports a pharmacological model in which Yoda1 activates PIEZO1 by wedging repeats A and B, providing a structural and thermodynamic framework for the rational design of PIEZO1 modulators. Beyond PIEZO channels, the three orthogonal computational approaches employed here represent a promising path toward drug discovery in highly heterogeneous membrane protein systems.
机械敏感性 PIEZO 通道是多种临床病症的潜在药物靶点,这促使人们寻找强效的化学 PIEZO 调节剂。其中包括 Yoda1,它是一种通过基于细胞的高通量筛选发现的广泛使用的合成小分子 PIEZO1 激活剂。Yoda1 被认为与 PIEZO1 的机械感觉臂结构域结合,该结构域位于通道孔附近的两个跨膜区域之间。然而,Yoda1 与该区域的结合如何促进通道激活仍然难以捉摸。在这里,我们首先证明用二硫键交联 PIEZO1 的重复 A 和 B 以氧化还原依赖的方式降低了 Yoda1 的作用,这表明 Yoda1 通过干扰这些重复之间的接触起作用。接下来,使用基于分子动力学的绝对结合自由能模拟,我们表明 Yoda1 优先占据 PIEZO1 开放状态下更深、两亲性的结合位点,具有更高的亲和力。使用开放和关闭状态下的 Yoda1 结合构象,在膜环境中进行相对结合自由能模拟,重现了已知 Yoda1 类似物的结构-活性关系。通过使用 Yoda1 结合位点的计算片段图对 800 万化合物库进行虚拟筛选,我们随后鉴定了两种对 PIEZO1 具有激动剂活性的化学支架。这项研究支持了一种药理学模型,即 Yoda1 通过楔入重复 A 和 B 来激活 PIEZO1,为 PIEZO1 调节剂的合理设计提供了结构和热力学框架。除了 PIEZO 通道之外,这里采用的三种正交计算方法代表了在高度异质膜蛋白系统中进行药物发现的有前途的途径。