Suppr超能文献

可生物降解的 PBAT 微塑料对小白菜( Brassica chinensis L. )生长和根际生态产生不利影响:重点关注根际微生物群落组成、元素代谢潜力和根分泌物。

Biodegradable PBAT microplastics adversely affect pakchoi (Brassica chinensis L.) growth and the rhizosphere ecology: Focusing on rhizosphere microbial community composition, element metabolic potential, and root exudates.

机构信息

Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China.

Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.

出版信息

Sci Total Environ. 2024 Feb 20;912:169048. doi: 10.1016/j.scitotenv.2023.169048. Epub 2023 Dec 5.

Abstract

Biodegradable plastics (BPs) have gained increased attention as a promising solution to plastics pollution problem. However, BPs often exhibited limited in situ biodegradation in the soil environment, so they may also release microplastics (MPs) into soils just like conventional non-degradable plastics. Therefore, it is necessary to evaluate the impacts of biodegradable MPs (BMPs) on soil ecosystem. Here, we explored the effects of biodegradable poly(butylene adipate-co-terephthalate) (PBAT) MPs and conventional polyethylene (PE) MPs on soil-plant (pakchoi) system at three doses (0.02 %, 0.2 %, and 2 %, w/w). Results showed that PBAT MPs reduced plant growth in a dose-dependent pattern, while PE MPs exhibited no significant phytotoxicity. High-dose PBAT MPs negatively affected the rhizosphere soil nutrient availability, e.g., decreased available phosphorus and available potassium. Metagenomics analysis revealed that PBAT MPs caused more serious interference with the rhizosphere microbial community composition and function than PE MPs. In particular, compared with PE MPs, PBAT MPs induced greater changes in functional potential of carbon, nitrogen, phosphorus, and sulfur cycles, which may lead to alterations in soil biogeochemical processes and ecological functions. Moreover, untargeted metabolomics showed that PBAT MPs and PE MPs differentially affect plant root exudates. Mantel tests, correlation analysis, and partial least squares path model analysis showed that changes in plant growth and root exudates were significantly correlated with soil properties and rhizosphere microbiome driven by the MPs-rhizosphere interactions. This work improves our knowledge of how biodegradable and conventional non-degradable MPs affect plant growth and the rhizosphere ecology, highlighting that BMPs might pose greater threat to soil ecosystems than non-degradable MPs.

摘要

可生物降解塑料(BPs)作为解决塑料污染问题的一种有前途的解决方案,引起了人们越来越多的关注。然而,BPs 在土壤环境中通常表现出有限的原位生物降解性,因此它们也可能像传统的不可降解塑料一样将微塑料(MPs)释放到土壤中。因此,有必要评估可生物降解 MPs(BMPs)对土壤生态系统的影响。在这里,我们研究了可生物降解的聚(丁二酸丁二醇酯-对苯二甲酸酯)(PBAT)MPs 和传统的聚乙烯(PE)MPs 在三个剂量(0.02%、0.2%和 2%,w/w)下对土壤-植物(小白菜)系统的影响。结果表明,PBAT MPs 以剂量依赖的方式抑制植物生长,而 PE MPs 则没有表现出明显的植物毒性。高剂量的 PBAT MPs 会降低根际土壤养分的有效性,例如降低有效磷和有效钾。宏基因组学分析表明,与 PE MPs 相比,PBAT MPs 对根际微生物群落组成和功能的干扰更为严重。特别是与 PE MPs 相比,PBAT MPs 诱导了碳、氮、磷和硫循环功能潜力的更大变化,这可能导致土壤生物地球化学过程和生态功能的改变。此外,非靶向代谢组学表明,PBAT MPs 和 PE MPs 对植物根系分泌物有不同的影响。Mantel 检验、相关性分析和偏最小二乘路径模型分析表明,植物生长和根系分泌物的变化与土壤性质和根际微生物群落密切相关,这是由 MPs-根际相互作用引起的。这项工作提高了我们对可生物降解和传统不可降解 MPs 如何影响植物生长和根际生态的认识,强调了 BMPs 对土壤生态系统可能比不可降解 MPs 构成更大的威胁。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验