Suppr超能文献

甘氨酸稳态需要反向 SHMT 流。

Glycine homeostasis requires reverse SHMT flux.

机构信息

Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA.

Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA.

出版信息

Cell Metab. 2024 Jan 2;36(1):103-115.e4. doi: 10.1016/j.cmet.2023.12.001.

Abstract

The folate-dependent enzyme serine hydroxymethyltransferase (SHMT) reversibly converts serine into glycine and a tetrahydrofolate-bound one-carbon unit. Such one-carbon unit production plays a critical role in development, the immune system, and cancer. Using rodent models, here we show that the whole-body SHMT flux acts to net consume rather than produce glycine. Pharmacological inhibition of whole-body SHMT1/2 and genetic knockout of liver SHMT2 elevated circulating glycine levels up to eight-fold. Stable-isotope tracing revealed that the liver converts glycine to serine, which is then converted by serine dehydratase into pyruvate and burned in the tricarboxylic acid cycle. In response to diets deficient in serine and glycine, de novo biosynthetic flux was unaltered, but SHMT2- and serine-dehydratase-mediated catabolic flux was lower. Thus, glucose-derived serine synthesis is largely insensitive to systemic demand. Instead, circulating serine and glycine homeostasis is maintained through variable consumption, with liver SHMT2 a major glycine-consuming enzyme.

摘要

依赖叶酸的酶丝氨酸羟甲基转移酶(SHMT)可将丝氨酸可逆地转化为甘氨酸和四氢叶酸结合的一碳单位。这种一碳单位的产生在发育、免疫系统和癌症中起着关键作用。在这里,我们使用啮齿动物模型表明,全身 SHMT 通量的作用是净消耗而不是产生甘氨酸。全身 SHMT1/2 的药理学抑制和肝 SHMT2 的基因敲除使循环甘氨酸水平升高了 8 倍。稳定同位素示踪表明,肝脏将甘氨酸转化为丝氨酸,然后丝氨酸脱水酶将其转化为丙酮酸,并在三羧酸循环中燃烧。对缺乏丝氨酸和甘氨酸的饮食的反应是,从头合成通量没有改变,但 SHMT2 和丝氨酸脱水酶介导的分解代谢通量较低。因此,葡萄糖衍生的丝氨酸合成对全身需求基本不敏感。相反,通过可变消耗维持循环丝氨酸和甘氨酸的平衡,肝 SHMT2 是主要的甘氨酸消耗酶。

相似文献

1
Glycine homeostasis requires reverse SHMT flux.
Cell Metab. 2024 Jan 2;36(1):103-115.e4. doi: 10.1016/j.cmet.2023.12.001.
2
Glycine homeostasis requires reverse SHMT flux.
bioRxiv. 2023 Jan 12:2023.01.11.523668. doi: 10.1101/2023.01.11.523668.
3
Differential inhibitory effect of a pyrazolopyran compound on human serine hydroxymethyltransferase-amino acid complexes.
Arch Biochem Biophys. 2018 Sep 1;653:71-79. doi: 10.1016/j.abb.2018.07.001. Epub 2018 Jul 4.
4
Human SHMT inhibitors reveal defective glycine import as a targetable metabolic vulnerability of diffuse large B-cell lymphoma.
Proc Natl Acad Sci U S A. 2017 Oct 24;114(43):11404-11409. doi: 10.1073/pnas.1706617114. Epub 2017 Oct 9.
7
Novel tetrahydrofolate-dependent d-serine dehydratase activity of serine hydroxymethyltransferases.
FEBS J. 2024 Jan;291(2):308-322. doi: 10.1111/febs.16953. Epub 2023 Sep 18.
8
Serine hydroxymethyltransferase 1 and 2: gene sequence variation and functional genomic characterization.
J Neurochem. 2012 Mar;120(6):881-90. doi: 10.1111/j.1471-4159.2012.07646.x. Epub 2012 Feb 6.
10
as a Potential Therapeutic Target for Renal Cell Carcinoma.
Front Biosci (Landmark Ed). 2023 Sep 12;28(9):196. doi: 10.31083/j.fbl2809196.

引用本文的文献

2
Multifaceted role of serine hydroxymethyltransferase in health and disease.
Mol Cells. 2025 Sep;48(9):100262. doi: 10.1016/j.mocell.2025.100262. Epub 2025 Jul 28.
8
The oncoprotein SET promotes serine-derived one-carbon metabolism by regulating SHMT2 enzymatic activity.
Proc Natl Acad Sci U S A. 2025 May 13;122(19):e2412854122. doi: 10.1073/pnas.2412854122. Epub 2025 May 8.
9
Serine supplementation suppresses hypoxia-induced pathological retinal angiogenesis.
Theranostics. 2025 Apr 9;15(11):5087-5105. doi: 10.7150/thno.105299. eCollection 2025.
10
Serine metabolism in tumor progression and immunotherapy.
Discov Oncol. 2025 Apr 28;16(1):628. doi: 10.1007/s12672-025-02358-w.

本文引用的文献

1
Sources and Sinks of Serine in Nutrition, Health, and Disease.
Annu Rev Nutr. 2023 Aug 21;43:123-151. doi: 10.1146/annurev-nutr-061021-022648. Epub 2023 Jun 12.
2
DT-109 ameliorates nonalcoholic steatohepatitis in nonhuman primates.
Cell Metab. 2023 May 2;35(5):742-757.e10. doi: 10.1016/j.cmet.2023.03.013. Epub 2023 Apr 10.
3
Sensitisation of cancer cells to radiotherapy by serine and glycine starvation.
Br J Cancer. 2022 Nov;127(10):1773-1786. doi: 10.1038/s41416-022-01965-6. Epub 2022 Sep 17.
4
Gut bacterial nutrient preferences quantified in vivo.
Cell. 2022 Sep 1;185(18):3441-3456.e19. doi: 10.1016/j.cell.2022.07.020.
5
Glycine Synthesis Is Reduced in Adults With Morbid Obesity and Increases Following Bariatric Surgery.
Front Endocrinol (Lausanne). 2022 Jun 9;13:900343. doi: 10.3389/fendo.2022.900343. eCollection 2022.
6
Developing dietary interventions as therapy for cancer.
Nat Rev Cancer. 2022 Aug;22(8):452-466. doi: 10.1038/s41568-022-00485-y. Epub 2022 May 25.
7
Circulating metabolite homeostasis achieved through mass action.
Nat Metab. 2022 Jan;4(1):141-152. doi: 10.1038/s42255-021-00517-1. Epub 2022 Jan 20.
10
Muscle-Liver Trafficking of BCAA-Derived Nitrogen Underlies Obesity-Related Glycine Depletion.
Cell Rep. 2020 Nov 10;33(6):108375. doi: 10.1016/j.celrep.2020.108375.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验