Suppr超能文献

5'UTR 中的 N-甲基腺苷不会促进翻译起始。

N-methyladenosine in 5' UTR does not promote translation initiation.

机构信息

INSERM U1212 Acides nucléiques: Régulations Naturelle et Artificielle (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France.

Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany.

出版信息

Mol Cell. 2024 Feb 1;84(3):584-595.e6. doi: 10.1016/j.molcel.2023.12.028. Epub 2024 Jan 19.

Abstract

The most abundant N-methyladenosine (mA) modification on mRNAs is installed non-stoichiometrically across transcripts, with 5' untranslated regions (5' UTRs) being the least conductive. 5' UTRs are essential for translation initiation, yet the molecular mechanisms orchestrated by mA remain poorly understood. Here, we combined structural, biochemical, and single-molecule approaches and show that at the most common position, a single mA does not affect translation yields, the kinetics of translation initiation complex assembly, or start codon recognition both under permissive growth and following exposure to oxidative stress. Cryoelectron microscopy (cryo-EM) structures of the late preinitiation complex reveal that mA purine ring established stacking interactions with an arginine side chain of the initiation factor eIF2α, although with only a marginal energy contribution, as estimated computationally. These findings provide molecular insights into mA interactions with the initiation complex and suggest that the subtle stabilization is unlikely to affect the translation dynamics under homeostatic conditions or stress.

摘要

mRNA 上最丰富的 N6-甲基腺苷(m6A)修饰是非化学计量地分布在转录本上的,其中 5' 非翻译区(5'UTR)的修饰程度最低。5'UTR 对于翻译起始至关重要,但 m6A 所调控的分子机制仍知之甚少。在这里,我们结合结构、生化和单分子方法,表明在最常见的位置,单个 m6A 不会影响翻译产量、翻译起始复合物组装的动力学或起始密码子识别,无论是在允许生长的条件下还是在暴露于氧化应激后。翻译起始复合物的晚期冷冻电镜(cryo-EM)结构显示,m6A 的嘌呤环与起始因子 eIF2α 的精氨酸侧链建立了堆积相互作用,尽管据计算,其能量贡献只有微不足道的边际。这些发现为 m6A 与起始复合物的相互作用提供了分子见解,并表明这种细微的稳定不太可能影响在稳态条件或应激下的翻译动力学。

相似文献

1
N-methyladenosine in 5' UTR does not promote translation initiation.
Mol Cell. 2024 Feb 1;84(3):584-595.e6. doi: 10.1016/j.molcel.2023.12.028. Epub 2024 Jan 19.
2
Selection of start codon during mRNA scanning in eukaryotic translation initiation.
Commun Biol. 2022 Jun 15;5(1):587. doi: 10.1038/s42003-022-03534-2.
3
N-Methyladenosine Guides mRNA Alternative Translation during Integrated Stress Response.
Mol Cell. 2018 Feb 15;69(4):636-647.e7. doi: 10.1016/j.molcel.2018.01.019. Epub 2018 Feb 8.
4
Direct epitranscriptomic regulation of mammalian translation initiation through N4-acetylcytidine.
Mol Cell. 2022 Aug 4;82(15):2797-2814.e11. doi: 10.1016/j.molcel.2022.05.016. Epub 2022 Jun 8.
5
The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA.
Nature. 2016 Feb 25;530(7591):441-6. doi: 10.1038/nature16998. Epub 2016 Feb 10.
6
5' UTR m(6)A Promotes Cap-Independent Translation.
Cell. 2015 Nov 5;163(4):999-1010. doi: 10.1016/j.cell.2015.10.012. Epub 2015 Oct 22.
7
Dynamics of ribosome scanning and recycling revealed by translation complex profiling.
Nature. 2016 Jul 28;535(7613):570-4. doi: 10.1038/nature18647. Epub 2016 Jul 20.
8
The ASC-1 complex promotes translation initiation by scanning ribosomes.
EMBO J. 2023 Jun 15;42(12):e112869. doi: 10.15252/embj.2022112869. Epub 2023 Apr 24.
9
Dynamic m(6)A mRNA methylation directs translational control of heat shock response.
Nature. 2015 Oct 22;526(7574):591-4. doi: 10.1038/nature15377. Epub 2015 Oct 12.
10
Rapid 40S scanning and its regulation by mRNA structure during eukaryotic translation initiation.
Cell. 2022 Nov 23;185(24):4474-4487.e17. doi: 10.1016/j.cell.2022.10.005. Epub 2022 Nov 4.

引用本文的文献

1
RNA mA modification: a key regulator in normal and malignant processes.
Cell Investig. 2025 Jun;1(2). doi: 10.1016/j.clnves.2025.100023. Epub 2025 Jun 6.
2
Targeted Inhibition of Translation Initiation via 2'O-Methylation of Start Codons.
bioRxiv. 2025 Jun 17:2025.06.14.659565. doi: 10.1101/2025.06.14.659565.
3
m6A modification is incorporated into bacterial mRNA without specific functional benefit.
Nucleic Acids Res. 2025 May 22;53(10). doi: 10.1093/nar/gkaf425.
6
YTHDF1 and YTHDC1 mA reader proteins regulate HTLV-1 and activity.
J Virol. 2025 Mar 18;99(3):e0206324. doi: 10.1128/jvi.02063-24. Epub 2025 Feb 4.
7
Loss of YTHDC1 mA reading function promotes invasiveness in urothelial carcinoma of the bladder.
Exp Mol Med. 2025 Feb;57(1):118-130. doi: 10.1038/s12276-024-01377-x. Epub 2025 Jan 1.
8
A Review on Circular RNA Translation and Its Implications in Disease.
Methods Mol Biol. 2025;2883:109-137. doi: 10.1007/978-1-0716-4290-0_5.
9
RNA modifications: emerging players in the regulation of reproduction and development.
Acta Biochim Biophys Sin (Shanghai). 2024 Nov 21;57(1):33-58. doi: 10.3724/abbs.2024201.
10
Structural basis of AUC codon discrimination during translation initiation in yeast.
Nucleic Acids Res. 2024 Oct 14;52(18):11317-11335. doi: 10.1093/nar/gkae737.

本文引用的文献

1
Modulation of translational decoding by mA modification of mRNA.
Nat Commun. 2023 Aug 8;14(1):4784. doi: 10.1038/s41467-023-40422-7.
2
N-adenosine methylation controls the translation of insulin mRNA.
Nat Struct Mol Biol. 2023 Sep;30(9):1260-1264. doi: 10.1038/s41594-023-01048-x. Epub 2023 Jul 24.
3
Exon architecture controls mRNA mA suppression and gene expression.
Science. 2023 Feb 17;379(6633):677-682. doi: 10.1126/science.abj9090. Epub 2023 Jan 27.
4
Exclusion of m6A from splice-site proximal regions by the exon junction complex dictates m6A topologies and mRNA stability.
Mol Cell. 2023 Jan 19;83(2):237-251.e7. doi: 10.1016/j.molcel.2022.12.026. Epub 2023 Jan 3.
5
Transcriptome-wide profiling and quantification of N-methyladenosine by enzyme-assisted adenosine deamination.
Nat Biotechnol. 2023 Jul;41(7):993-1003. doi: 10.1038/s41587-022-01587-6. Epub 2023 Jan 2.
7
Absolute quantification of single-base mA methylation in the mammalian transcriptome using GLORI.
Nat Biotechnol. 2023 Mar;41(3):355-366. doi: 10.1038/s41587-022-01487-9. Epub 2022 Oct 27.
8
Biological roles of adenine methylation in RNA.
Nat Rev Genet. 2023 Mar;24(3):143-160. doi: 10.1038/s41576-022-00534-0. Epub 2022 Oct 19.
9
RNA m A methylation in cancer.
Mol Oncol. 2023 Feb;17(2):195-229. doi: 10.1002/1878-0261.13326. Epub 2022 Nov 6.
10
eIF5B and eIF1A reorient initiator tRNA to allow ribosomal subunit joining.
Nature. 2022 Jul;607(7917):185-190. doi: 10.1038/s41586-022-04858-z. Epub 2022 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验