Suppr超能文献

呼吸道微生物组在防御细菌性肺炎中的作用的研究进展。

Insights into the role of the respiratory tract microbiome in defense against bacterial pneumonia.

机构信息

University of Colorado School of Medicine, Department of Otolaryngology, Aurora, CO 80045, USA.

University of Colorado School of Medicine, Department of Otolaryngology, Aurora, CO 80045, USA.

出版信息

Curr Opin Microbiol. 2024 Feb;77:102428. doi: 10.1016/j.mib.2024.102428. Epub 2024 Jan 25.

Abstract

The respiratory tract microbiome (RTM) is a microbial ecosystem inhabiting different niches throughout the airway. A critical role for the RTM in dictating lung infection outcomes is underlined by recent efforts to identify community members benefiting respiratory tract health. Obligate anaerobes common in the oropharynx and lung such as Prevotella and Veillonella are associated with improved pneumonia outcomes and activate several immune defense pathways in the lower airway. Colonizers of the nasal cavity, including Corynebacterium and Dolosigranulum, directly impact the growth and virulence of lung pathogens, aligning with robust clinical correlations between their upper airway abundance and reduced respiratory tract infection risk. Here, we highlight recent work identifying respiratory tract bacteria that promote airway health and resilience against disease, with a focus on lung infections and the underlying mechanisms driving RTM-protective benefits.

摘要

呼吸道微生物组(RTM)是栖息在气道不同小生境中的微生物生态系统。最近的努力旨在确定有益于呼吸道健康的群落成员,这突显了 RTM 在决定肺部感染结果方面的关键作用。在口咽部和肺部常见的专性厌氧菌,如普雷沃氏菌属和韦荣球菌属,与改善肺炎结局有关,并在下呼吸道激活几种免疫防御途径。鼻腔的定植菌,包括棒状杆菌属和多尔西格兰姆菌属,直接影响肺部病原体的生长和毒力,与它们在上呼吸道的丰度与呼吸道感染风险降低之间的强有力的临床相关性相一致。在这里,我们重点介绍了最近确定促进气道健康和抵御疾病的呼吸道细菌的工作,重点是肺部感染和驱动 RTM 保护益处的潜在机制。

相似文献

1
Insights into the role of the respiratory tract microbiome in defense against bacterial pneumonia.
Curr Opin Microbiol. 2024 Feb;77:102428. doi: 10.1016/j.mib.2024.102428. Epub 2024 Jan 25.
2
The loss of topography in the microbial communities of the upper respiratory tract in the elderly.
Ann Am Thorac Soc. 2014 May;11(4):513-21. doi: 10.1513/AnnalsATS.201310-351OC.
3
Signatures of COVID-19 Severity and Immune Response in the Respiratory Tract Microbiome.
mBio. 2021 Aug 31;12(4):e0177721. doi: 10.1128/mBio.01777-21. Epub 2021 Aug 17.
4
Respiratory tract microbiome and pneumonia.
Prog Mol Biol Transl Sci. 2022;192(1):97-124. doi: 10.1016/bs.pmbts.2022.07.002. Epub 2022 Sep 11.
7
The impact of breastfeeding on nasopharyngeal microbial communities in infants.
Am J Respir Crit Care Med. 2014 Aug 1;190(3):298-308. doi: 10.1164/rccm.201401-0073OC.
8
Dysbiosis of upper respiratory tract microbiota in elderly pneumonia patients.
ISME J. 2016 Jan;10(1):97-108. doi: 10.1038/ismej.2015.99. Epub 2015 Jul 7.
9
The cystic fibrosis lung microbiome.
Ann Am Thorac Soc. 2014 Jan;11 Suppl 1:S61-5. doi: 10.1513/AnnalsATS.201306-159MG.
10
Assessment of airway microbiota and inflammation in cystic fibrosis using multiple sampling methods.
Ann Am Thorac Soc. 2015 Feb;12(2):221-9. doi: 10.1513/AnnalsATS.201407-310OC.

引用本文的文献

1
Microbial Interconnections in One Health: A Critical Nexus Between Companion Animals and Human Microbiomes.
Microorganisms. 2025 Jul 3;13(7):1564. doi: 10.3390/microorganisms13071564.
4
The Respiratory Tract Microbiome and Human Health.
Microb Biotechnol. 2025 May;18(5):e70147. doi: 10.1111/1751-7915.70147.
5
Fabrication of disposable microextraction analytical tool for detection of bacterial pathogen using volatile metabolites emission.
RSC Adv. 2025 Apr 10;15(15):11391-11400. doi: 10.1039/d4ra09099c. eCollection 2025 Apr 9.
7
The impact of environmental factors on respiratory tract microbiome and respiratory system diseases.
Eur J Med Res. 2025 Apr 4;30(1):236. doi: 10.1186/s40001-025-02517-3.
8
Beyond the present: current and future perspectives on the role of infections in pediatric PCD.
Front Pediatr. 2025 Mar 18;13:1564156. doi: 10.3389/fped.2025.1564156. eCollection 2025.
10
Corynebacteria from the respiratory microbiota modulate inflammatory responses and associate with a reduced pneumococcal burden in the lungs.
Front Cell Infect Microbiol. 2025 Jan 28;14:1530178. doi: 10.3389/fcimb.2024.1530178. eCollection 2024.

本文引用的文献

1
Commensal colonization reduces burden and subsequent airway damage.
Front Cell Infect Microbiol. 2023 May 25;13:1144157. doi: 10.3389/fcimb.2023.1144157. eCollection 2023.
3
Bacterial immunotherapy is highly effective in reducing recurrent upper respiratory tract infections in children: a prospective observational study.
Eur Arch Otorhinolaryngol. 2023 Oct;280(10):4519-4530. doi: 10.1007/s00405-023-08035-4. Epub 2023 May 30.
4
The upper and lower respiratory tract microbiome in severe aspiration pneumonia.
iScience. 2023 May 6;26(6):106832. doi: 10.1016/j.isci.2023.106832. eCollection 2023 Jun 16.
5
Ecology of the respiratory tract microbiome.
Trends Microbiol. 2023 Sep;31(9):972-984. doi: 10.1016/j.tim.2023.04.006. Epub 2023 May 10.
6
Empiric anti-anaerobic antibiotics are associated with adverse clinical outcomes in emergency department patients.
Eur Respir J. 2023 May 11;61(5). doi: 10.1183/13993003.00413-2023. Print 2023 May.
7
Commensal bacteria of the lung microbiota synergistically inhibit inflammation in a three-dimensional epithelial cell model.
Front Immunol. 2023 Apr 21;14:1176044. doi: 10.3389/fimmu.2023.1176044. eCollection 2023.
9
Impact of prophylactic and 'rescue pack' antibiotics on the airway microbiome in chronic lung disease.
BMJ Open Respir Res. 2023 Apr;10(1). doi: 10.1136/bmjresp-2022-001335.
10
from the Human Nose Inhibit Colonization with a Secreted Peptidoglycan Endopeptidase.
mBio. 2023 Apr 25;14(2):e0046423. doi: 10.1128/mbio.00464-23. Epub 2023 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验