Suppr超能文献

一种敲除策略,可快速、通用且灵活地对 3D 组织工程化骨骼肌中的肌肉疾病进行建模。

A knock down strategy for rapid, generic, and versatile modelling of muscular dystrophies in 3D-tissue-engineered-skeletal muscle.

机构信息

Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, 3015 GE, The Netherlands.

Department of Pediatrics, Erasmus University Medical Center, Rotterdam, 3015 GE, The Netherlands.

出版信息

Skelet Muscle. 2024 Feb 22;14(1):3. doi: 10.1186/s13395-024-00335-5.

Abstract

BACKGROUND

Human iPSC-derived 3D-tissue-engineered-skeletal muscles (3D-TESMs) offer advanced technology for disease modelling. However, due to the inherent genetic heterogeneity among human individuals, it is often difficult to distinguish disease-related readouts from random variability. The generation of genetically matched isogenic controls using gene editing can reduce variability, but the generation of isogenic hiPSC-derived 3D-TESMs can take up to 6 months, thereby reducing throughput.

METHODS

Here, by combining 3D-TESM and shRNA technologies, we developed a disease modelling strategy to induce distinct genetic deficiencies in a single hiPSC-derived myogenic progenitor cell line within 1 week.

RESULTS

As proof of principle, we recapitulated disease-associated pathology of Duchenne muscular dystrophy and limb-girdle muscular dystrophy type 2A caused by loss of function of DMD and CAPN3, respectively. shRNA-mediated knock down of DMD or CAPN3 induced a loss of contractile function, disruption of tissue architecture, and disease-specific proteomes. Pathology in DMD-deficient 3D-TESMs was partially rescued by a candidate gene therapy treatment using micro-dystrophin, with similar efficacy compared to animal models.

CONCLUSIONS

These results show that isogenic shRNA-based humanized 3D-TESM models provide a fast, cheap, and efficient tool to model muscular dystrophies and are useful for the preclinical evaluation of novel therapies.

摘要

背景

人类诱导多能干细胞(iPSC)衍生的 3D 组织工程化骨骼肌(3D-TESM)为疾病建模提供了先进的技术。然而,由于人类个体之间存在固有遗传异质性,因此通常难以将与疾病相关的检测结果与随机变异性区分开来。使用基因编辑生成遗传匹配的同基因对照可以降低变异性,但生成同基因 hiPSC 衍生的 3D-TESM 可能需要长达 6 个月的时间,从而降低了通量。

方法

在这里,我们通过结合 3D-TESM 和 shRNA 技术,开发了一种疾病建模策略,可在 1 周内诱导单个 hiPSC 衍生的肌原性祖细胞系中出现不同的遗传缺陷。

结果

作为原理验证,我们分别 recapitulated 杜氏肌营养不良症和肢带型肌营养不良症 2A 相关的病理学,这两种疾病分别是由 DMD 和 CAPN3 的功能丧失引起的。shRNA 介导的 DMD 或 CAPN3 敲低导致收缩功能丧失、组织架构破坏和疾病特异性蛋白质组。使用微肌营养不良蛋白的候选基因治疗治疗可部分挽救 DMD 缺陷型 3D-TESM 中的病理学,其疗效与动物模型相当。

结论

这些结果表明,基于 shRNA 的同基因人类化 3D-TESM 模型提供了一种快速、廉价且高效的工具来模拟肌肉疾病,并且可用于新型治疗方法的临床前评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d16b/10882755/3fce9b792e09/13395_2024_335_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验