Suppr超能文献

基于机器学习和蛋白质组学分析鉴定阻塞性睡眠呼吸暂停患者中 SARS-CoV-2 感染的生物标志物和途径。

Identification of biomarkers and pathways for the SARS-CoV-2 infections in obstructive sleep apnea patients based on machine learning and proteomic analysis.

机构信息

Department of Tuberculosis and Respiratory, Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China (USTC), Hefei, Anhui, China.

出版信息

BMC Pulm Med. 2024 Mar 5;24(1):112. doi: 10.1186/s12890-024-02921-1.

Abstract

BACKGROUND

The prevalence of obstructive sleep apnea (OSA) was found to be higher in individuals following COVID-19 infection. However, the intricate mechanisms that underscore this concomitance remain partially elucidated. The aim of this study was to delve deeper into the molecular mechanisms that underpin this comorbidity.

METHODS

We acquired gene expression profiles for COVID-19 (GSE157103) and OSA (GSE75097) from the Gene Expression Omnibus (GEO) database. Upon identifying shared feature genes between OSA and COVID-19 utilizing LASSO, Random forest and Support vector machines algorithms, we advanced to functional annotation, analysis of protein-protein interaction networks, module construction, and identification of pivotal genes. Furthermore, we established regulatory networks encompassing transcription factor (TF)-gene and TF-miRNA interactions, and searched for promising drug targets. Subsequently, the expression levels of pivotal genes were validated through proteomics data from COVID-19 cases.

RESULTS

Fourteen feature genes shared between OSA and COVID-19 were selected for further investigation. Through functional annotation, it was indicated that metabolic pathways play a role in the pathogenesis of both disorders. Subsequently, employing the cytoHubba plugin, ten hub genes were recognized, namely TP53, CCND1, MDM2, RB1, HIF1A, EP300, STAT3, CDK2, HSP90AA1, and PPARG. The finding of proteomics unveiled a substantial augmentation in the expression level of HSP90AA1 in COVID-19 patient samples, especially in severe conditions.

CONCLUSIONS

Our investigation illuminate a mutual pathogenic mechanism that underlies both OSA and COVID-19, which may provide novel perspectives for future investigations into the underlying mechanisms.

摘要

背景

有研究发现,COVID-19 感染后阻塞性睡眠呼吸暂停(OSA)的患病率更高。然而,支持这种并存的复杂机制仍部分阐明。本研究旨在深入研究支持这种合并症的分子机制。

方法

我们从基因表达综合数据库(GEO)中获取了 COVID-19(GSE157103)和 OSA(GSE75097)的基因表达谱。利用 LASSO、随机森林和支持向量机算法在 OSA 和 COVID-19 之间确定了共享特征基因后,我们继续进行功能注释、蛋白质-蛋白质相互作用网络分析、模块构建和关键基因鉴定。此外,我们构建了包含转录因子(TF)-基因和 TF-miRNA 相互作用的调控网络,并寻找有前途的药物靶点。随后,通过 COVID-19 病例的蛋白质组学数据验证了关键基因的表达水平。

结果

选择了 OSA 和 COVID-19 之间的 14 个特征基因进行进一步研究。通过功能注释,表明代谢途径在两种疾病的发病机制中起作用。随后,使用 cytoHubba 插件,识别出 10 个枢纽基因,即 TP53、CCND1、MDM2、RB1、HIF1A、EP300、STAT3、CDK2、HSP90AA1 和 PPARG。蛋白质组学的发现揭示了 COVID-19 患者样本中 HSP90AA1 的表达水平显著增加,尤其是在严重情况下。

结论

我们的研究阐明了 OSA 和 COVID-19 之间存在共同的致病机制,这可能为未来对潜在机制的研究提供新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bc7/10913609/694f492ad175/12890_2024_2921_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验