Suppr超能文献

zDHHC20 驱动的 CD80 的 S-棕榈酰化对于其共刺激功能是必需的。

zDHHC20-driven S-palmitoylation of CD80 is required for its costimulatory function.

机构信息

Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310000, China.

Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310000, China.

出版信息

Acta Pharmacol Sin. 2024 Jun;45(6):1214-1223. doi: 10.1038/s41401-024-01248-1. Epub 2024 Mar 11.

Abstract

CD80 is a transmembrane glycoprotein belonging to the B7 family, which has emerged as a crucial molecule in T cell modulation via the CD28 or CTLA4 axes. CD80-involved regulation of immune balance is a finely tuned process and it is important to elucidate the underlying mechanism for regulating CD80 function. In this study we investigated the post-translational modification of CD80 and its biological relevance. By using a metabolic labeling strategy, we found that CD80 was S-palmitoylated on multiple cysteine residues (Cys261/262/266/271) in both the transmembrane and the cytoplasmic regions. We further identified zDHHC20 as a bona fide palmitoyl-transferase determining the S-palmitoylation level of CD80. We demonstrated that S-palmitoylation protected CD80 protein from ubiquitination degradation, regulating the protein stability, and ensured its accurate plasma membrane localization. The palmitoylation-deficient mutant (4CS) CD80 disrupted these functions, ultimately resulting in the loss of its costimulatory function upon T cell activation. Taken together, our results describe a new post-translational modification of CD80 by S-palmitoylation as a novel mechanism for the regulation of CD80 upon T cell activation.

摘要

CD80 是一种跨膜糖蛋白,属于 B7 家族,它作为 T 细胞调节中的关键分子,通过 CD28 或 CTLA4 轴发挥作用。CD80 参与免疫平衡的调节是一个精细调控的过程,阐明调节 CD80 功能的潜在机制非常重要。在本研究中,我们研究了 CD80 的翻译后修饰及其生物学相关性。通过使用代谢标记策略,我们发现 CD80 在跨膜和细胞质区域的多个半胱氨酸残基(Cys261/262/266/271)上发生 S-棕榈酰化。我们进一步鉴定出 zDHHC20 是决定 CD80 S-棕榈酰化水平的真正的棕榈酰转移酶。我们证明 S-棕榈酰化可保护 CD80 蛋白免受泛素化降解,调节其蛋白稳定性,并确保其准确的质膜定位。棕榈酰化缺陷突变体(4CS)CD80 破坏了这些功能,最终导致其在 T 细胞激活时丧失共刺激功能。总之,我们的研究结果描述了 CD80 通过 S-棕榈酰化的一种新的翻译后修饰,作为 T 细胞激活时调节 CD80 的一种新机制。

相似文献

1
zDHHC20-driven S-palmitoylation of CD80 is required for its costimulatory function.
Acta Pharmacol Sin. 2024 Jun;45(6):1214-1223. doi: 10.1038/s41401-024-01248-1. Epub 2024 Mar 11.
3
ZDHHC7-mediated -palmitoylation of ATG16L1 facilitates LC3 lipidation and autophagosome formation.
Autophagy. 2024 Dec;20(12):2719-2737. doi: 10.1080/15548627.2024.2386915. Epub 2024 Aug 11.
5
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
6
Systemic treatments for metastatic cutaneous melanoma.
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.
9
ROS-dependent S-palmitoylation activates cleaved and intact gasdermin D.
Nature. 2024 Jun;630(8016):437-446. doi: 10.1038/s41586-024-07373-5. Epub 2024 Apr 10.
10
Depalmitoylase ABHD16A negatively regulates the anti-hepatitis B virus activity of IFITM1.
Microbiol Spectr. 2025 Jul;13(7):e0309524. doi: 10.1128/spectrum.03095-24. Epub 2025 May 28.

引用本文的文献

1
Recent advances in S-palmitoylation and its emerging roles in human diseases.
J Hematol Oncol. 2025 Sep 1;18(1):83. doi: 10.1186/s13045-025-01738-7.
2
Palmitic acid and palmitoylation in cancer: Understanding, insights, and challenges.
Innovation (Camb). 2025 Apr 29;6(8):100918. doi: 10.1016/j.xinn.2025.100918. eCollection 2025 Aug 4.
3
Role of S-palmitoylation in digestive system diseases.
Cell Death Discov. 2025 Jul 18;11(1):331. doi: 10.1038/s41420-025-02629-z.
6
Research trends of protein palmitoylation in cancer from 2004 to 2024: a bibliometric and visualization analysis.
Front Oncol. 2025 Jun 23;15:1571870. doi: 10.3389/fonc.2025.1571870. eCollection 2025.
7
Protein lipidation in the tumor microenvironment: enzymology, signaling pathways, and therapeutics.
Mol Cancer. 2025 May 7;24(1):138. doi: 10.1186/s12943-025-02309-7.
8
Regulation of Adaptive Immunity by Lipid Post-translational Modifications.
Immune Netw. 2025 Feb 18;25(1):e11. doi: 10.4110/in.2025.25.e11. eCollection 2025 Feb.
9
A Proteomics Outlook on the Molecular Effectors of CAR-T Cell Therapy in Cancer Management.
J Proteome Res. 2025 Jun 6;24(6):2571-2583. doi: 10.1021/acs.jproteome.4c00930. Epub 2025 Mar 6.
10
ZDHHC20 mediated S-palmitoylation of fatty acid synthase (FASN) promotes hepatocarcinogenesis.
Mol Cancer. 2024 Dec 19;23(1):274. doi: 10.1186/s12943-024-02195-5.

本文引用的文献

1
Innate lymphoid cells and innate-like T cells in cancer - at the crossroads of innate and adaptive immunity.
Nat Rev Cancer. 2023 Jun;23(6):351-371. doi: 10.1038/s41568-023-00562-w. Epub 2023 Apr 20.
2
Recent advancements in the B7/CD28 immune checkpoint families: new biology and clinical therapeutic strategies.
Cell Mol Immunol. 2023 Jul;20(7):694-713. doi: 10.1038/s41423-023-01019-8. Epub 2023 Apr 17.
3
Bivalent recognition of fatty acyl-CoA by a human integral membrane palmitoyltransferase.
Proc Natl Acad Sci U S A. 2022 Feb 15;119(7). doi: 10.1073/pnas.2022050119.
5
DHHC9-mediated GLUT1 S-palmitoylation promotes glioblastoma glycolysis and tumorigenesis.
Nat Commun. 2021 Oct 7;12(1):5872. doi: 10.1038/s41467-021-26180-4.
6
S-acylation controls SARS-CoV-2 membrane lipid organization and enhances infectivity.
Dev Cell. 2021 Oct 25;56(20):2790-2807.e8. doi: 10.1016/j.devcel.2021.09.016. Epub 2021 Oct 1.
7
The mechanisms of integral membrane protein biogenesis.
Nat Rev Mol Cell Biol. 2022 Feb;23(2):107-124. doi: 10.1038/s41580-021-00413-2. Epub 2021 Sep 23.
8
Loss of Optineurin Drives Cancer Immune Evasion via Palmitoylation-Dependent IFNGR1 Lysosomal Sorting and Degradation.
Cancer Discov. 2021 Jul;11(7):1826-1843. doi: 10.1158/2159-8290.CD-20-1571. Epub 2021 Feb 24.
9
Protein cysteine palmitoylation in immunity and inflammation.
FEBS J. 2021 Dec;288(24):7043-7059. doi: 10.1111/febs.15728. Epub 2021 Feb 12.
10
PD-L1 and B7-1 Cis-Interaction: New Mechanisms in Immune Checkpoints and Immunotherapies.
Trends Mol Med. 2021 Mar;27(3):207-219. doi: 10.1016/j.molmed.2020.10.004. Epub 2020 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验