Suppr超能文献

仿生双网络胶原纤维通过 AKT/YAP 机械转导在脊髓损伤后构建具有多孔和机械线索的神经干细胞龛。

Biomimetic Dual-Network Collagen Fibers with Porous and Mechanical Cues Reconstruct Neural Stem Cell Niche via AKT/YAP Mechanotransduction after Spinal Cord Injury.

机构信息

School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China.

Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China.

出版信息

Small. 2024 Aug;20(32):e2311456. doi: 10.1002/smll.202311456. Epub 2024 Mar 18.

Abstract

Tissue engineering scaffolds can mediate the maneuverability of neural stem cell (NSC) niche to influence NSC behavior, such as cell self-renewal, proliferation, and differentiation direction, showing the promising application in spinal cord injury (SCI) repair. Here, dual-network porous collagen fibers (PCFS) are developed as neurogenesis scaffolds by employing biomimetic plasma ammonia oxidase catalysis and conventional amidation cross-linking. Following optimizing the mechanical parameters of PCFS, the well-matched Young's modulus and physiological dynamic adaptability of PCFS (4.0 wt%) have been identified as a neurogenetic exciter after SCI. Remarkably, porous topographies and curving wall-like protrusions are generated on the surface of PCFS by simple and non-toxic CO bubble-water replacement. As expected, PCFS with porous and matched mechanical properties can considerably activate the cadherin receptor of NSCs and induce a series of serine-threonine kinase/yes-associated protein mechanotransduction signal pathways, encouraging cellular orientation, neuron differentiation, and adhesion. In SCI rats, implanted PCFS with matched mechanical properties further integrated into the injured spinal cords, inhibited the inflammatory progression and decreased glial and fibrous scar formation. Wall-like protrusions of PCFS drive multiple neuron subtypes formation and even functional neural circuits, suggesting a viable therapeutic strategy for nerve regeneration and functional recovery after SCI.

摘要

组织工程支架可以调节神经干细胞(NSC)龛的可操作性,从而影响 NSC 的行为,如细胞自我更新、增殖和分化方向,在脊髓损伤(SCI)修复中显示出有前途的应用。在这里,双网络多孔胶原纤维(PCFS)通过仿生等离子体氨氧化酶催化和常规酰胺化交联被开发为神经发生支架。在优化 PCFS 的力学参数后,确定力学性能匹配良好的 PCFS(4.0wt%)作为 SCI 后的神经发生激发剂。值得注意的是,PCFS 的表面通过简单无毒的 CO 气泡-水置换生成多孔和弯曲壁状突起。正如预期的那样,具有多孔和匹配力学性能的 PCFS 可以显著激活 NSCs 的钙粘蛋白受体,并诱导一系列丝氨酸-苏氨酸激酶/yes 相关蛋白机械转导信号通路,促进细胞定向、神经元分化和黏附。在 SCI 大鼠中,植入具有匹配力学性能的 PCFS 进一步整合到损伤的脊髓中,抑制了炎症进展,减少了神经胶质和纤维瘢痕的形成。PCFS 的壁状突起驱动多种神经元亚型的形成,甚至功能性神经回路的形成,为 SCI 后的神经再生和功能恢复提供了一种可行的治疗策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验