Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
Shanghai Key Laboratory of Aging Studies, Shanghai, China.
Nature. 2024 Apr;628(8009):910-918. doi: 10.1038/s41586-024-07256-9. Epub 2024 Apr 3.
OSCA/TMEM63 channels are the largest known family of mechanosensitive channels, playing critical roles in plant and mammalian mechanotransduction. Here we determined 44 cryogenic electron microscopy structures of OSCA/TMEM63 channels in different environments to investigate the molecular basis of OSCA/TMEM63 channel mechanosensitivity. In nanodiscs, we mimicked increased membrane tension and observed a dilated pore with membrane access in one of the OSCA1.2 subunits. In liposomes, we captured the fully open structure of OSCA1.2 in the inside-in orientation, in which the pore shows a large lateral opening to the membrane. Unusually for ion channels, structural, functional and computational evidence supports the existence of a 'proteo-lipidic pore' in which lipids act as a wall of the ion permeation pathway. In the less tension-sensitive homologue OSCA3.1, we identified an 'interlocking' lipid tightly bound in the central cleft, keeping the channel closed. Mutation of the lipid-coordinating residues induced OSCA3.1 activation, revealing a conserved open conformation of OSCA channels. Our structures provide a global picture of the OSCA channel gating cycle, uncover the importance of bound lipids and show that each subunit can open independently. This expands both our understanding of channel-mediated mechanotransduction and channel pore formation, with important mechanistic implications for the TMEM16 and TMC protein families.
OSCA/TMEM63 通道是已知最大的机械敏感通道家族,在植物和哺乳动物的机械转导中发挥着关键作用。在这里,我们确定了 44 种不同环境下的 OSCA/TMEM63 通道的低温电子显微镜结构,以研究 OSCA/TMEM63 通道机械敏感性的分子基础。在纳米盘中,我们模拟了膜张力的增加,在 OSCA1.2 的一个亚基中观察到一个扩张的孔,膜可以进入该孔。在脂质体中,我们捕获了 OSCA1.2 以向内取向的完全开放结构,其中孔显示出与膜的大侧向开口。与离子通道不同的是,结构、功能和计算证据支持存在一种“蛋白-脂孔”,其中脂质作为离子渗透途径的壁。在张力敏感性较低的同源物 OSCA3.1 中,我们鉴定出一个紧密结合在中央裂隙中的“互锁”脂质,使通道关闭。协调脂质的残基突变诱导 OSCA3.1 激活,揭示了 OSCA 通道的保守开放构象。我们的结构提供了 OSCA 通道门控循环的整体图景,揭示了结合脂质的重要性,并表明每个亚基可以独立打开。这扩展了我们对通道介导的机械转导和通道孔形成的理解,对 TMEM16 和 TMC 蛋白家族具有重要的机制意义。