Suppr超能文献

DrugMap:半胱氨酸配体能力的泛癌定量分析。

DrugMap: A quantitative pan-cancer analysis of cysteine ligandability.

机构信息

Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA.

Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA.

出版信息

Cell. 2024 May 9;187(10):2536-2556.e30. doi: 10.1016/j.cell.2024.03.027. Epub 2024 Apr 22.

Abstract

Cysteine-focused chemical proteomic platforms have accelerated the clinical development of covalent inhibitors for a wide range of targets in cancer. However, how different oncogenic contexts influence cysteine targeting remains unknown. To address this question, we have developed "DrugMap," an atlas of cysteine ligandability compiled across 416 cancer cell lines. We unexpectedly find that cysteine ligandability varies across cancer cell lines, and we attribute this to differences in cellular redox states, protein conformational changes, and genetic mutations. Leveraging these findings, we identify actionable cysteines in NF-κB1 and SOX10 and develop corresponding covalent ligands that block the activity of these transcription factors. We demonstrate that the NF-κB1 probe blocks DNA binding, whereas the SOX10 ligand increases SOX10-SOX10 interactions and disrupts melanoma transcriptional signaling. Our findings reveal heterogeneity in cysteine ligandability across cancers, pinpoint cell-intrinsic features driving cysteine targeting, and illustrate the use of covalent probes to disrupt oncogenic transcription-factor activity.

摘要

半胱氨酸靶向化学蛋白质组学平台加速了针对癌症中广泛靶点的共价抑制剂的临床开发。然而,不同的致癌环境如何影响半胱氨酸靶向仍然未知。为了解决这个问题,我们开发了“DrugMap”,这是一个跨 416 种癌细胞系编译的半胱氨酸配体可及性图谱。我们出人意料地发现,半胱氨酸配体可及性在癌细胞系之间存在差异,我们将其归因于细胞氧化还原状态、蛋白质构象变化和基因突变的差异。利用这些发现,我们确定了 NF-κB1 和 SOX10 中的可作用半胱氨酸,并开发了相应的共价配体来阻断这些转录因子的活性。我们证明 NF-κB1 探针阻断 DNA 结合,而 SOX10 配体增加 SOX10-SOX10 相互作用并破坏黑色素瘤转录信号。我们的研究结果揭示了癌症中半胱氨酸配体可及性的异质性,指出了驱动半胱氨酸靶向的细胞内在特征,并说明了使用共价探针来破坏致癌转录因子活性的方法。

相似文献

1
DrugMap: A quantitative pan-cancer analysis of cysteine ligandability.
Cell. 2024 May 9;187(10):2536-2556.e30. doi: 10.1016/j.cell.2024.03.027. Epub 2024 Apr 22.
2
DrugMap: A quantitative pan-cancer analysis of cysteine ligandability.
bioRxiv. 2023 Oct 23:2023.10.20.563287. doi: 10.1101/2023.10.20.563287.
3
The Lived Experience of Autistic Adults in Employment: A Systematic Search and Synthesis.
Autism Adulthood. 2024 Dec 2;6(4):495-509. doi: 10.1089/aut.2022.0114. eCollection 2024 Dec.
5
Sun protection for preventing basal cell and squamous cell skin cancers.
Cochrane Database Syst Rev. 2016 Jul 25;7(7):CD011161. doi: 10.1002/14651858.CD011161.pub2.
6
Can a Liquid Biopsy Detect Circulating Tumor DNA With Low-passage Whole-genome Sequencing in Patients With a Sarcoma? A Pilot Evaluation.
Clin Orthop Relat Res. 2025 Jan 1;483(1):39-48. doi: 10.1097/CORR.0000000000003161. Epub 2024 Jun 21.
10
EORTC guidelines for the use of erythropoietic proteins in anaemic patients with cancer: 2006 update.
Eur J Cancer. 2007 Jan;43(2):258-70. doi: 10.1016/j.ejca.2006.10.014. Epub 2006 Dec 19.

引用本文的文献

1
Identifying in vivo genetic dependencies of melanocyte and melanoma development.
Elife. 2025 Aug 29;13:RP100257. doi: 10.7554/eLife.100257.
2
Structure-based rational design of covalent probes.
Commun Chem. 2025 Aug 12;8(1):242. doi: 10.1038/s42004-025-01606-y.
3
Mitochondria reactive oxygen species signaling-dependent immune responses in macrophages and T cells.
Immunity. 2025 Aug 12;58(8):1904-1921. doi: 10.1016/j.immuni.2025.07.012. Epub 2025 Aug 4.
5
Cysteine allostery and autoinhibition govern human STING oligomer functionality.
Nat Chem Biol. 2025 Jul 3. doi: 10.1038/s41589-025-01951-y.
6
Recent Overview of Protein Palmitoylation and Profiling Methodologies.
Methods Mol Biol. 2025;2921:361-370. doi: 10.1007/978-1-0716-4502-4_20.
7
Identification of Anticancer ROS Targets by Cysteine Reactivity Protein Profiling.
Methods Mol Biol. 2025;2921:265-273. doi: 10.1007/978-1-0716-4502-4_14.
9
Unraveling the nexus: Genomic instability and metabolism in cancer.
Cell Rep. 2025 Apr 22;44(4):115540. doi: 10.1016/j.celrep.2025.115540. Epub 2025 Apr 11.
10
Oxidation of retromer complex controls mitochondrial translation.
Nature. 2025 Mar 26. doi: 10.1038/s41586-025-08756-y.

本文引用的文献

2
Proteogenomic data and resources for pan-cancer analysis.
Cancer Cell. 2023 Aug 14;41(8):1397-1406. doi: 10.1016/j.ccell.2023.06.009.
3
Proteome-wide structural analysis identifies warhead- and coverage-specific biases in cysteine-focused chemoproteomics.
Cell Chem Biol. 2023 Jul 20;30(7):828-838.e4. doi: 10.1016/j.chembiol.2023.06.021. Epub 2023 Jul 13.
4
Systematic identification of anticancer drug targets reveals a nucleus-to-mitochondria ROS-sensing pathway.
Cell. 2023 May 25;186(11):2361-2379.e25. doi: 10.1016/j.cell.2023.04.026. Epub 2023 May 15.
5
CysDB: a human cysteine database based on experimental quantitative chemoproteomics.
Cell Chem Biol. 2023 Jun 15;30(6):683-698.e3. doi: 10.1016/j.chembiol.2023.04.004. Epub 2023 Apr 28.
6
Proteomic discovery of chemical probes that perturb protein complexes in human cells.
Mol Cell. 2023 May 18;83(10):1725-1742.e12. doi: 10.1016/j.molcel.2023.03.026. Epub 2023 Apr 20.
7
Structure-Based Drug Discovery with Deep Learning.
Chembiochem. 2023 Jul 3;24(13):e202200776. doi: 10.1002/cbic.202200776. Epub 2023 Jun 13.
8
Chemoproteomics-enabled discovery of a covalent molecular glue degrader targeting NF-κB.
Cell Chem Biol. 2023 Apr 20;30(4):394-402.e9. doi: 10.1016/j.chembiol.2023.02.008. Epub 2023 Mar 9.
9
NRF2 activation induces NADH-reductive stress, providing a metabolic vulnerability in lung cancer.
Cell Metab. 2023 Mar 7;35(3):487-503.e7. doi: 10.1016/j.cmet.2023.01.012. Epub 2023 Feb 24.
10
UniProt: the Universal Protein Knowledgebase in 2023.
Nucleic Acids Res. 2023 Jan 6;51(D1):D523-D531. doi: 10.1093/nar/gkac1052.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验