Suppr超能文献

系统鉴定抗癌药物靶点揭示了细胞核到线粒体 ROS 感应途径。

Systematic identification of anticancer drug targets reveals a nucleus-to-mitochondria ROS-sensing pathway.

机构信息

Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.

Cell Signaling Technology, Inc., Danvers, MA, USA.

出版信息

Cell. 2023 May 25;186(11):2361-2379.e25. doi: 10.1016/j.cell.2023.04.026. Epub 2023 May 15.

Abstract

Multiple anticancer drugs have been proposed to cause cell death, in part, by increasing the steady-state levels of cellular reactive oxygen species (ROS). However, for most of these drugs, exactly how the resultant ROS function and are sensed is poorly understood. It remains unclear which proteins the ROS modify and their roles in drug sensitivity/resistance. To answer these questions, we examined 11 anticancer drugs with an integrated proteogenomic approach identifying not only many unique targets but also shared ones-including ribosomal components, suggesting common mechanisms by which drugs regulate translation. We focus on CHK1 that we find is a nuclear HO sensor that launches a cellular program to dampen ROS. CHK1 phosphorylates the mitochondrial DNA-binding protein SSBP1 to prevent its mitochondrial localization, which in turn decreases nuclear HO. Our results reveal a druggable nucleus-to-mitochondria ROS-sensing pathway-required to resolve nuclear HO accumulation and mediate resistance to platinum-based agents in ovarian cancers.

摘要

多种抗癌药物被提出通过增加细胞内活性氧(ROS)的稳态水平来导致细胞死亡。然而,对于大多数这些药物,ROS 如何发挥作用以及被感知的机制还了解甚少。ROS 修饰的哪些蛋白质以及它们在药物敏感性/耐药性中的作用仍不清楚。为了回答这些问题,我们采用整合的蛋白质基因组学方法研究了 11 种抗癌药物,不仅鉴定了许多独特的靶标,还鉴定了一些共同的靶标,包括核糖体成分,这表明药物调节翻译的常见机制。我们专注于 CHK1,发现它是一种核 HO 传感器,启动细胞程序以抑制 ROS。CHK1 磷酸化线粒体 DNA 结合蛋白 SSBP1 以阻止其线粒体定位,这反过来又降低了核 HO。我们的结果揭示了一种可药物治疗的核-线粒体 ROS 感应途径,该途径对于解决核 HO 积累和介导卵巢癌对铂类药物的耐药性是必需的。

相似文献

1
Systematic identification of anticancer drug targets reveals a nucleus-to-mitochondria ROS-sensing pathway.
Cell. 2023 May 25;186(11):2361-2379.e25. doi: 10.1016/j.cell.2023.04.026. Epub 2023 May 15.
2
Identification of chemotherapy targets reveals a nucleus-to-mitochondria ROS sensing pathway.
bioRxiv. 2023 Mar 11:2023.03.11.532189. doi: 10.1101/2023.03.11.532189.
3
Mitochondrial redox sensing by the kinase ATM maintains cellular antioxidant capacity.
Sci Signal. 2018 Jul 10;11(538):eaaq0702. doi: 10.1126/scisignal.aaq0702.
4
A radical shift in perspective: mitochondria as regulators of reactive oxygen species.
J Exp Biol. 2017 Apr 1;220(Pt 7):1170-1180. doi: 10.1242/jeb.132142.
5
Effects of bioenergetics, temperature and cadmium on liver mitochondria reactive oxygen species production and consumption.
Aquat Toxicol. 2019 Sep;214:105264. doi: 10.1016/j.aquatox.2019.105264. Epub 2019 Jul 25.
7
Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy.
J Cell Physiol. 2016 Dec;231(12):2570-81. doi: 10.1002/jcp.25349. Epub 2016 Jun 20.
8
Mitochondria-derived ROS activate AMP-activated protein kinase (AMPK) indirectly.
J Biol Chem. 2018 Nov 2;293(44):17208-17217. doi: 10.1074/jbc.RA118.002579. Epub 2018 Sep 19.
9
Chemoptogenetic damage to mitochondria causes rapid telomere dysfunction.
Proc Natl Acad Sci U S A. 2019 Sep 10;116(37):18435-18444. doi: 10.1073/pnas.1910574116. Epub 2019 Aug 26.
10
Review: Using isolated mitochondria to investigate mitochondrial hydrogen peroxide metabolism.
Comp Biochem Physiol B Biochem Mol Biol. 2021 Oct-Dec;256:110614. doi: 10.1016/j.cbpb.2021.110614. Epub 2021 May 7.

引用本文的文献

2
Mitochondrial inflexibility ignites tumor immunogenicity in postoperative glioblastoma.
Nat Commun. 2025 Jul 28;16(1):6946. doi: 10.1038/s41467-025-62244-5.
3
DNA damage response pathway regulates Nrf2 in response to oxidative stress.
Sci Adv. 2025 Jul 25;11(30):eadu9555. doi: 10.1126/sciadv.adu9555.
4
A ROS-mediated oxidation-O-GlcNAcylation cascade governs ferroptosis.
Nat Cell Biol. 2025 Jul 18. doi: 10.1038/s41556-025-01722-w.
5
Mitotic MTH1 inhibitor karonudib kills epithelial ovarian cancer independent of platinum sensitivity.
Exp Hematol Oncol. 2025 Jun 23;14(1):88. doi: 10.1186/s40164-025-00681-0.
6
Identification of Anticancer ROS Targets by Cysteine Reactivity Protein Profiling.
Methods Mol Biol. 2025;2921:265-273. doi: 10.1007/978-1-0716-4502-4_14.
7
Mechanism and application of thiol-disulfide redox biosensors with a fluorescence-lifetime readout.
Proc Natl Acad Sci U S A. 2025 May 13;122(19):e2503978122. doi: 10.1073/pnas.2503978122. Epub 2025 May 6.
9
Protein Biomarkers of DNA Damage in Yeast Cells for Genotoxicity Screening.
Environ Health (Wash). 2024 Nov 14;3(3):250-258. doi: 10.1021/envhealth.4c00160. eCollection 2025 Mar 21.
10
Oxidation of retromer complex controls mitochondrial translation.
Nature. 2025 Mar 26. doi: 10.1038/s41586-025-08756-y.

本文引用的文献

1
Cisplatin Resistance: Genetic and Epigenetic Factors Involved.
Biomolecules. 2022 Sep 24;12(10):1365. doi: 10.3390/biom12101365.
2
Cisplatin for cancer therapy and overcoming chemoresistance.
Heliyon. 2022 Sep 14;8(9):e10608. doi: 10.1016/j.heliyon.2022.e10608. eCollection 2022 Sep.
3
Elesclomol: a copper ionophore targeting mitochondrial metabolism for cancer therapy.
J Exp Clin Cancer Res. 2022 Sep 12;41(1):271. doi: 10.1186/s13046-022-02485-0.
4
The gold complex auranofin: new perspectives for cancer therapy.
Discov Oncol. 2021 Oct 20;12(1):42. doi: 10.1007/s12672-021-00439-0.
5
Mitochondria-Shaping Proteins and Chemotherapy.
Front Oncol. 2021 Nov 18;11:769036. doi: 10.3389/fonc.2021.769036. eCollection 2021.
6
Nuclear transporter Importin-13 plays a key role in the oxidative stress transcriptional response.
Nat Commun. 2021 Oct 8;12(1):5904. doi: 10.1038/s41467-021-26125-x.
7
The deubiquitinase USP15 modulates cellular redox and is a therapeutic target in acute myeloid leukemia.
Leukemia. 2022 Feb;36(2):438-451. doi: 10.1038/s41375-021-01394-z. Epub 2021 Aug 31.
8
The mitochondrial single-stranded DNA binding protein is essential for initiation of mtDNA replication.
Sci Adv. 2021 Jul 2;7(27). doi: 10.1126/sciadv.abf8631. Print 2021 Jul.
10
A lysine-cysteine redox switch with an NOS bridge regulates enzyme function.
Nature. 2021 May;593(7859):460-464. doi: 10.1038/s41586-021-03513-3. Epub 2021 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验