Suppr超能文献

ARID1A 抑制 R 环介导的 STING 型 I 干扰素通路激活抗肿瘤免疫。

ARID1A suppresses R-loop-mediated STING-type I interferon pathway activation of anti-tumor immunity.

机构信息

Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92092, USA; NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.

Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Gynecologic Oncology, University of California, San Diego, San Diego, CA, USA.

出版信息

Cell. 2024 Jun 20;187(13):3390-3408.e19. doi: 10.1016/j.cell.2024.04.025. Epub 2024 May 15.

Abstract

Clinical trials have identified ARID1A mutations as enriched among patients who respond favorably to immune checkpoint blockade (ICB) in several solid tumor types independent of microsatellite instability. We show that ARID1A loss in murine models is sufficient to induce anti-tumor immune phenotypes observed in ARID1A mutant human cancers, including increased CD8+ T cell infiltration and cytolytic activity. ARID1A-deficient cancers upregulated an interferon (IFN) gene expression signature, the ARID1A-IFN signature, associated with increased R-loops and cytosolic single-stranded DNA (ssDNA). Overexpression of the R-loop resolving enzyme, RNASEH2B, or cytosolic DNase, TREX1, in ARID1A-deficient cells prevented cytosolic ssDNA accumulation and ARID1A-IFN gene upregulation. Further, the ARID1A-IFN signature and anti-tumor immunity were driven by STING-dependent type I IFN signaling, which was required for improved responsiveness of ARID1A mutant tumors to ICB treatment. These findings define a molecular mechanism underlying anti-tumor immunity in ARID1A mutant cancers.

摘要

临床试验已经确定,在几种实体肿瘤类型中,ARID1A 突变在对免疫检查点阻断 (ICB) 反应良好的患者中更为丰富,而与微卫星不稳定性无关。我们表明,在小鼠模型中 ARID1A 的缺失足以诱导在 ARID1A 突变型人类癌症中观察到的抗肿瘤免疫表型,包括增加的 CD8+T 细胞浸润和细胞溶解活性。ARID1A 缺陷型癌症上调了干扰素 (IFN) 基因表达特征,即 ARID1A-IFN 特征,与增加的 R 环和胞质单链 DNA (ssDNA) 相关。在 ARID1A 缺陷型细胞中过表达 R 环解析酶 RNASEH2B 或胞质 DNA 酶 TREX1 可防止胞质 ssDNA 积累和 ARID1A-IFN 基因上调。此外,ARID1A-IFN 特征和抗肿瘤免疫由 STING 依赖性 I 型 IFN 信号驱动,这对于改善 ARID1A 突变型肿瘤对 ICB 治疗的反应性是必需的。这些发现定义了 ARID1A 突变型癌症中抗肿瘤免疫的分子机制。

相似文献

1
ARID1A suppresses R-loop-mediated STING-type I interferon pathway activation of anti-tumor immunity.
Cell. 2024 Jun 20;187(13):3390-3408.e19. doi: 10.1016/j.cell.2024.04.025. Epub 2024 May 15.
2
The Exonuclease TREX1 Constitutes an Innate Immune Checkpoint Limiting cGAS/STING-Mediated Antitumor Immunity.
Cancer Immunol Res. 2024 Jun 4;12(6):663-672. doi: 10.1158/2326-6066.CIR-23-1078.
3
Loss of ARID1A 'loops' in STING.
Trends Immunol. 2024 Aug;45(8):568-570. doi: 10.1016/j.it.2024.07.001. Epub 2024 Jul 25.
5
PMN-MDSCs are responsible for immune suppression in anti-PD-1 treated TAP1 defective melanoma.
Clin Transl Oncol. 2025 Jan 18. doi: 10.1007/s12094-024-03840-7.
6
ARID1A deficiency promotes malignant proliferation of hepatocellular carcinoma by activating HDAC7/ENO1 signaling pathway.
Hepatol Commun. 2025 Jun 19;9(7). doi: 10.1097/HC9.0000000000000738. eCollection 2025 Jul 1.
7
TREX1 Inactivation Unleashes Cancer Cell STING-Interferon Signaling and Promotes Antitumor Immunity.
Cancer Discov. 2024 May 1;14(5):752-765. doi: 10.1158/2159-8290.CD-23-0700.
8
Inhibition of the ATM/Chk2 axis promotes cGAS/STING signaling in ARID1A-deficient tumors.
J Clin Invest. 2020 Nov 2;130(11):5951-5966. doi: 10.1172/JCI130445.
9
Centrosome protein TAX1BP2 mediates STING-dependent immune response and potentiates anti-PD-1 efficacy in hepatocellular carcinoma.
Mol Ther. 2025 Jun 4;33(6):2913-2930. doi: 10.1016/j.ymthe.2025.01.043. Epub 2025 Jan 28.
10

引用本文的文献

2
Prognostic Significance of R-Loops in Lung Adenocarcinoma: Implications for Immune Response and Drug Sensitivity.
Cancer Manag Res. 2025 Aug 12;17:1625-1642. doi: 10.2147/CMAR.S533571. eCollection 2025.
3
Biological and clinical implications of a model of surveillance immunity.
J Clin Invest. 2025 Aug 1;135(15). doi: 10.1172/JCI191645.
4
VDAC2 brake release: unleashing inflammation via IFNγ.
Trends Pharmacol Sci. 2025 Aug;46(8):695-696. doi: 10.1016/j.tips.2025.07.001. Epub 2025 Jul 29.
5
Autocrine interferon poisoning mediates ADAR1-dependent synthetic lethality in BRCA1/2-mutant cancers.
Nat Commun. 2025 Jul 29;16(1):6972. doi: 10.1038/s41467-025-62309-5.
7
β-catenin functions as a molecular adapter for disordered cBAF interactions.
Mol Cell. 2025 Jul 15. doi: 10.1016/j.molcel.2025.06.026.
10
R-loops: a key driver of inflammatory responses in cancer.
Exp Mol Med. 2025 Jul 8. doi: 10.1038/s12276-025-01495-0.

本文引用的文献

1
The ARID1A-METTL3-m6A axis ensures effective RNase H1-mediated resolution of R-loops and genome stability.
Cell Rep. 2024 Feb 27;43(2):113779. doi: 10.1016/j.celrep.2024.113779. Epub 2024 Feb 13.
3
Canonical BAF complex activity shapes the enhancer landscape that licenses CD8 T cell effector and memory fates.
Immunity. 2023 Jun 13;56(6):1303-1319.e5. doi: 10.1016/j.immuni.2023.05.005.
4
An integrated tumor, immune and microbiome atlas of colon cancer.
Nat Med. 2023 May;29(5):1273-1286. doi: 10.1038/s41591-023-02324-5. Epub 2023 May 19.
5
Stepwise activities of mSWI/SNF family chromatin remodeling complexes direct T cell activation and exhaustion.
Mol Cell. 2023 Apr 20;83(8):1216-1236.e12. doi: 10.1016/j.molcel.2023.02.026. Epub 2023 Mar 20.
8
R-loop-derived cytoplasmic RNA-DNA hybrids activate an immune response.
Nature. 2023 Jan;613(7942):187-194. doi: 10.1038/s41586-022-05545-9. Epub 2022 Dec 21.
9
Clonal lineage tracing reveals mechanisms skewing CD8+ T cell fate decisions in chronic infection.
J Exp Med. 2023 Jan 2;220(1). doi: 10.1084/jem.20220679. Epub 2022 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验