Suppr超能文献

基于间质性膀胱炎相关基因开发和验证重度抑郁症诊断模型的集成机器学习框架。

An integrated machine learning framework for developing and validating a diagnostic model of major depressive disorder based on interstitial cystitis-related genes.

机构信息

Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China.

Department of neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China.

出版信息

J Affect Disord. 2024 Aug 15;359:22-32. doi: 10.1016/j.jad.2024.05.061. Epub 2024 May 14.

Abstract

BACKGROUND

Major depressive disorder (MDD) and interstitial cystitis (IC) are two highly debilitating conditions that often coexist with reciprocal effect, significantly exacerbating patients' suffering. However, the molecular underpinnings linking these disorders remain poorly understood.

METHODS

Transcriptomic data from GEO datasets including those of MDD and IC patients was systematically analyzed to develop and validate our model. Following removal of batch effect, differentially expressed genes (DEGs) between respective disease and control groups were identified. Shared DEGs of the conditions then underwent functional enrichment analyses. Additionally, immune infiltration analysis was quantified through ssGSEA. A diagnostic model for MDD was constructed by exploring 113 combinations of 12 machine learning algorithms with 10-fold cross-validation on the training sets following by external validation on test sets. Finally, the "Enrichr" platform was utilized to identify potential drugs for MDD.

RESULTS

Totally, 21 key genes closely associated with both MDD and IC were identified, predominantly involved in immune processes based on enrichment analyses. Immune infiltration analysis revealed distinct profiles of immune cell infiltration in MDD and IC compared to healthy controls. From these genes, a robust 11-gene (ABCD2, ATP8B4, TNNT1, AKR1C3, SLC26A8, S100A12, PTX3, FAM3B, ITGA2B, OLFM4, BCL7A) diagnostic signature was constructed, which exhibited superior performance over existing MDD diagnostic models both in training and testing cohorts. Additionally, epigallocatechin gallate and 10 other drugs emerged as potential targets for MDD.

CONCLUSION

Our work developed a diagnostic model for MDD employing a combination of bioinformatic techniques and machine learning methods, focusing on shared genes between MDD and IC.

摘要

背景

重度抑郁症(MDD)和间质性膀胱炎(IC)是两种高度致残的疾病,常相互影响,显著加重患者的痛苦。然而,将这些疾病联系起来的分子基础仍知之甚少。

方法

系统分析 GEO 数据集(包括 MDD 和 IC 患者的数据集)中的转录组数据,以开发和验证我们的模型。在去除批次效应后,确定相应疾病组和对照组之间的差异表达基因(DEGs)。然后对这些疾病的共同 DEGs 进行功能富集分析。此外,通过 ssGSEA 量化免疫浸润分析。通过在训练集上使用 12 种机器学习算法的 113 种组合进行 10 倍交叉验证,并在测试集上进行外部验证,构建 MDD 的诊断模型。最后,利用“Enrichr”平台鉴定 MDD 的潜在药物。

结果

总共鉴定出 21 个与 MDD 和 IC 密切相关的关键基因,基于富集分析,这些基因主要涉及免疫过程。免疫浸润分析显示,MDD 和 IC 与健康对照组相比,免疫细胞浸润的特征明显不同。从这些基因中,构建了一个稳健的 11 基因(ABCD2、ATP8B4、TNNT1、AKR1C3、SLC26A8、S100A12、PTX3、FAM3B、ITGA2B、OLFM4、BCL7A)诊断特征,在训练和测试队列中均优于现有 MDD 诊断模型。此外,表没食子儿茶素没食子酸酯和其他 10 种药物被认为是 MDD 的潜在靶点。

结论

我们的工作使用生物信息学技术和机器学习方法相结合,针对 MDD 和 IC 之间的共同基因,开发了一种 MDD 诊断模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验