Suppr超能文献

DNA 和 RNA 疫苗的全面比较。

A comprehensive comparison of DNA and RNA vaccines.

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC 27705, United States.

Department of Biomedical Engineering, Duke University, Durham, NC 27705, United States.

出版信息

Adv Drug Deliv Rev. 2024 Jul;210:115340. doi: 10.1016/j.addr.2024.115340. Epub 2024 May 27.

Abstract

Nucleic acid technology has revolutionized vaccine development, enabling rapid design and production of RNA and DNA vaccines for prevention and treatment of diseases. The successful deployment of mRNA and plasmid DNA vaccines against COVID-19 has further validated the technology. At present, mRNA platform is prevailing due to its higher efficacy, while DNA platform is undergoing rapid evolution because it possesses unique advantages that can potentially overcome the problems associated with the mRNA platform. To help understand the recent performances of the two vaccine platforms and recognize their clinical potentials in the future, this review compares the advantages and drawbacks of mRNA and DNA vaccines that are currently known in the literature, in terms of development timeline, financial cost, ease of distribution, efficacy, safety, and regulatory approval of products. Additionally, the review discusses the ongoing clinical trials, strategies for improvement, and alternative designs of RNA and DNA platforms for vaccination.

摘要

核酸技术已经彻底改变了疫苗的开发,使得 RNA 和 DNA 疫苗能够快速设计和生产,用于预防和治疗疾病。mRNA 和质粒 DNA 疫苗在 COVID-19 中的成功应用进一步验证了该技术。目前,由于 mRNA 平台具有更高的功效,因此它占据主导地位,而 DNA 平台正在快速发展,因为它具有独特的优势,有可能克服与 mRNA 平台相关的问题。为了帮助了解这两种疫苗平台的最新表现,并认识到它们在未来的临床潜力,本文综述比较了目前文献中已知的 mRNA 和 DNA 疫苗在开发时间、财务成本、分发便利性、功效、安全性和产品监管批准方面的优缺点。此外,还讨论了正在进行的临床试验、改进策略以及 RNA 和 DNA 平台的替代设计用于疫苗接种。

相似文献

1
A comprehensive comparison of DNA and RNA vaccines.
Adv Drug Deliv Rev. 2024 Jul;210:115340. doi: 10.1016/j.addr.2024.115340. Epub 2024 May 27.
2
[DNA Vaccine Technologies: Design and Delivery].
Mol Biol (Mosk). 2025 Jan-Feb;59(1):3-21.
3
Immunogenicity and Protective Efficacy of Nucleic Acid-Based Vaccines Against COVID-19: A Systematic Review.
Mol Biotechnol. 2024 Dec;66(12):3438-3448. doi: 10.1007/s12033-023-00965-y. Epub 2023 Nov 25.
4
Efficacy and safety of COVID-19 vaccines.
Cochrane Database Syst Rev. 2022 Dec 7;12(12):CD015477. doi: 10.1002/14651858.CD015477.
6
The advent of clinical self-amplifying RNA vaccines.
Mol Ther. 2025 Apr 3. doi: 10.1016/j.ymthe.2025.03.060.
7
Establishment of human post-vaccination SARS-CoV-2 standard reference sera.
J Immunol Methods. 2024 Jul;530:113698. doi: 10.1016/j.jim.2024.113698. Epub 2024 May 31.
9
Intramuscular DNA vaccine provides protection in non-human primate and mouse models of SARS-CoV-2.
Front Immunol. 2025 Jun 6;16:1589584. doi: 10.3389/fimmu.2025.1589584. eCollection 2025.
10
Advancing mRNA vaccines for infectious diseases: key components, innovations, and clinical progress.
Essays Biochem. 2025 May 1;69(2):EBC20253009. doi: 10.1042/EBC20253009.

引用本文的文献

1
Prospects and Challenges of Lung Cancer Vaccines.
Vaccines (Basel). 2025 Aug 5;13(8):836. doi: 10.3390/vaccines13080836.
2
Engineering chimeric PCSK9 for a vaccine against atherosclerosis.
Mol Ther Methods Clin Dev. 2025 Jul 12;33(3):101535. doi: 10.1016/j.omtm.2025.101535. eCollection 2025 Sep 11.
3
Spatiotemporal control of immune responses with nucleic acid cocktail vaccine.
Adv Ther (Weinh). 2024 Nov;7(11). doi: 10.1002/adtp.202400263. Epub 2024 Sep 6.
5
Vaccine Development: Lessons, Challenges, and Future Innovations.
Int J Mol Sci. 2025 Feb 25;26(5):2012. doi: 10.3390/ijms26052012.
6
Peptides: potential delivery systems for mRNA.
RSC Chem Biol. 2025 Feb 26;6(5):666-677. doi: 10.1039/d4cb00295d. eCollection 2025 May 8.
7
[Platform technologies in vaccine development].
Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2025 Apr;68(4):368-377. doi: 10.1007/s00103-025-04024-6. Epub 2025 Mar 4.
9
-Derived β-Glucan Capsules as a Delivery System for DNA Vaccines.
Vaccines (Basel). 2024 Dec 18;12(12):1428. doi: 10.3390/vaccines12121428.
10
mRNA Vaccines Against COVID-19 as Trailblazers for Other Human Infectious Diseases.
Vaccines (Basel). 2024 Dec 16;12(12):1418. doi: 10.3390/vaccines12121418.

本文引用的文献

1
Optimizing cell therapy by sorting cells with high extracellular vesicle secretion.
Nat Commun. 2024 Jun 7;15(1):4870. doi: 10.1038/s41467-024-49123-1.
2
Personalized neoantigen vaccine and pembrolizumab in advanced hepatocellular carcinoma: a phase 1/2 trial.
Nat Med. 2024 Apr;30(4):1044-1053. doi: 10.1038/s41591-024-02894-y. Epub 2024 Apr 7.
3
Anticancer Therapy Targeting Cancer-Derived Extracellular Vesicles.
ACS Nano. 2024 Mar 5;18(9):6748-6765. doi: 10.1021/acsnano.3c06462. Epub 2024 Feb 23.
4
Delineation of DNA and mRNA COVID-19 vaccine-induced immune responses in preclinical animal models.
Hum Vaccin Immunother. 2023 Dec 15;19(3):2281733. doi: 10.1080/21645515.2023.2281733. Epub 2023 Nov 27.
5
Transient inhibition of lysosomal functions potentiates nucleic acid vaccines.
Proc Natl Acad Sci U S A. 2023 Oct 31;120(44):e2306465120. doi: 10.1073/pnas.2306465120. Epub 2023 Oct 23.
6
Targeted modulation of immune cells and tissues using engineered biomaterials.
Nat Rev Bioeng. 2023 Feb;1(2):107-124. doi: 10.1038/s44222-022-00016-2. Epub 2023 Jan 30.
7
Improving cell and gene therapy safety and performance using next-generation Nanoplasmid vectors.
Mol Ther Nucleic Acids. 2023 Apr 7;32:494-503. doi: 10.1016/j.omtn.2023.04.003. eCollection 2023 Jun 13.
9
Understanding Intracellular Biology to Improve mRNA Delivery by Lipid Nanoparticles.
Small Methods. 2023 Sep;7(9):e2201695. doi: 10.1002/smtd.202201695. Epub 2023 Jun 14.
10
Engineering cytokine therapeutics.
Nat Rev Bioeng. 2023;1(4):286-303. doi: 10.1038/s44222-023-00030-y. Epub 2023 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验