Suppr超能文献

丝氨酸耗竭通过激活线粒体 DNA 介导的 cGAS-STING 信号促进抗肿瘤免疫。

Serine Depletion Promotes Antitumor Immunity by Activating Mitochondrial DNA-Mediated cGAS-STING Signaling.

机构信息

Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York.

Department of Radiation Oncology, Weill Cornell Medical College, New York, New York.

出版信息

Cancer Res. 2024 Aug 15;84(16):2645-2659. doi: 10.1158/0008-5472.CAN-23-1788.

Abstract

Serine is critical for supporting cancer metabolism, and depriving malignant cells of this nonessential amino acid exerts antineoplastic effects, in large part, through disrupting metabolic pathways. Given the intricate relationship between cancer metabolism and the immune system, the metabolic defects imposed by serine deprivation might impact tumor-targeting immunity. In this study, we demonstrated that restricting endogenous and exogenous sources of serine in colorectal cancer cells results in mitochondrial dysfunction, leading to mitochondrial DNA (mtDNA) accumulation in the cytosol and consequent cGAS-STING1-driven type I IFN secretion. Depleting mtDNA or blocking its release attenuated cGAS-STING1 activation during serine deprivation. In vivo studies revealed that serine deprivation limits tumor growth, accompanied by enhanced type I IFN signaling and intratumoral infiltration of immune effector cells. Notably, the tumor-suppressive and immune-enhancing effects of serine restriction were impaired by T-cell depletion and IFN receptor blockade. Moreover, disrupting cGAS-STING1 signaling in colorectal cancer cells limited the immunostimulatory and tumor-suppressive effects of serine deprivation. Lastly, serine depletion increased the sensitivity of tumors to an immune checkpoint inhibitor targeting PD-1. Taken together, these findings reveal a role for serine as a suppressor of antitumor immunity, suggesting that serine deprivation may be employed to enhance tumor immunogenicity and improve responsiveness to immune checkpoint inhibitors. Significance: Depriving cancer cells of serine provokes mitochondrial perturbations that induce cytosolic mitochondrial DNA accumulation and subsequent activation of cGAS-STING signaling, stimulating tumor-targeting immune responses that can be enhanced with PD-1 targeted therapy. See related commentary by Borges and Garg, p. 2569.

摘要

丝氨酸对支持癌症代谢至关重要,剥夺恶性细胞这种非必需氨基酸在很大程度上通过破坏代谢途径产生抗肿瘤作用。鉴于癌症代谢与免疫系统之间的复杂关系,丝氨酸剥夺引起的代谢缺陷可能会影响肿瘤靶向免疫。在这项研究中,我们证明了限制结直肠癌细胞内源性和外源性丝氨酸来源会导致线粒体功能障碍,导致线粒体 DNA(mtDNA)在细胞质中积累,并随后引发 cGAS-STING1 驱动的 I 型 IFN 分泌。耗尽 mtDNA 或阻止其释放可减轻丝氨酸剥夺期间 cGAS-STING1 的激活。体内研究表明,丝氨酸剥夺限制肿瘤生长,同时增强 I 型 IFN 信号和免疫效应细胞在肿瘤内的浸润。值得注意的是,T 细胞耗竭和 IFN 受体阻断会损害丝氨酸限制的肿瘤抑制和免疫增强作用。此外,破坏结直肠癌细胞中的 cGAS-STING1 信号会限制丝氨酸剥夺的免疫刺激和肿瘤抑制作用。最后,丝氨酸耗尽增加了肿瘤对针对 PD-1 的免疫检查点抑制剂的敏感性。总之,这些发现揭示了丝氨酸作为抗肿瘤免疫抑制物的作用,表明剥夺丝氨酸可能被用于增强肿瘤免疫原性并提高对免疫检查点抑制剂的反应性。意义:剥夺癌细胞丝氨酸会引起线粒体扰动,导致细胞质中 mtDNA 积累,随后激活 cGAS-STING 信号,刺激肿瘤靶向免疫反应,并用 PD-1 靶向治疗增强。见 Borges 和 Garg 的相关评论,第 2569 页。

相似文献

1
Serine Depletion Promotes Antitumor Immunity by Activating Mitochondrial DNA-Mediated cGAS-STING Signaling.
Cancer Res. 2024 Aug 15;84(16):2645-2659. doi: 10.1158/0008-5472.CAN-23-1788.
2
An Immunometabolic Route for Activating cGAS/STING to Drive Anticancer Immunity.
Cancer Res. 2024 Aug 15;84(16):2569-2571. doi: 10.1158/0008-5472.CAN-24-1624.
3
Metabolic regulation of the mitochondrial immune checkpoint.
Oncoimmunology. 2024 Aug 26;13(1):2394247. doi: 10.1080/2162402X.2024.2394247. eCollection 2024.
4
Riluzole Enhancing Anti-PD-1 Efficacy by Activating cGAS/STING Signaling in Colorectal Cancer.
Mol Cancer Ther. 2025 Jan 2;24(1):131-140. doi: 10.1158/1535-7163.MCT-24-0289.
5
The Exonuclease TREX1 Constitutes an Innate Immune Checkpoint Limiting cGAS/STING-Mediated Antitumor Immunity.
Cancer Immunol Res. 2024 Jun 4;12(6):663-672. doi: 10.1158/2326-6066.CIR-23-1078.
6
The carcinogenic metabolite acetaldehyde impairs cGAS activity to negatively regulate antiviral and antitumor immunity.
Cancer Lett. 2025 May 1;617:217615. doi: 10.1016/j.canlet.2025.217615. Epub 2025 Mar 6.
8
Acylglycerol kinase inhibits macrophage anti-tumor activity via limiting mtDNA release and cGAS-STING-type I IFN response.
Theranostics. 2025 Jan 1;15(4):1304-1319. doi: 10.7150/thno.101298. eCollection 2025.

引用本文的文献

1
Targeting the interplay of cGAS-STING and ferroptosis by nanomedicine in the treatment of cancer.
J Exp Clin Cancer Res. 2025 Aug 22;44(1):249. doi: 10.1186/s13046-025-03520-6.
2
Metabolites as agents and targets for cancer immunotherapy.
Nat Rev Drug Discov. 2025 Jun 26. doi: 10.1038/s41573-025-01227-z.
3
Demystifying the cGAS-STING pathway: precision regulation in the tumor immune microenvironment.
Mol Cancer. 2025 Jun 12;24(1):178. doi: 10.1186/s12943-025-02380-0.
4
L-serine promotes pro-carcinogenic effects of colibactin-producing .
Gut Microbes. 2025 Dec;17(1):2515480. doi: 10.1080/19490976.2025.2515480. Epub 2025 Jun 5.
5
Mitochondrial DNA transfer between malignant cells and T lymphocytes shapes the cancer-immunity dialogue.
Oncoimmunology. 2025 Dec;14(1):2512109. doi: 10.1080/2162402X.2025.2512109. Epub 2025 May 28.
7
The role and research progress of serine metabolism in tumor cells.
Front Oncol. 2025 Apr 8;15:1509662. doi: 10.3389/fonc.2025.1509662. eCollection 2025.
10
Multi-omics analysis identifies OSGEPL1 as an oncogene in hepatocellular carcinoma.
Discov Oncol. 2025 Mar 16;16(1):328. doi: 10.1007/s12672-025-02066-5.

本文引用的文献

1
Serine Supports Epithelial and Immune Cell Function in Colitis.
Am J Pathol. 2024 Jun;194(6):927-940. doi: 10.1016/j.ajpath.2024.01.021. Epub 2024 Feb 28.
2
MRE11 liberates cGAS from nucleosome sequestration during tumorigenesis.
Nature. 2024 Jan;625(7995):585-592. doi: 10.1038/s41586-023-06889-6. Epub 2024 Jan 10.
3
Advancing translational research for colorectal immuno-oncology.
Br J Cancer. 2023 Oct;129(9):1442-1450. doi: 10.1038/s41416-023-02392-x. Epub 2023 Aug 10.
4
Lysine catabolism reprograms tumour immunity through histone crotonylation.
Nature. 2023 May;617(7962):818-826. doi: 10.1038/s41586-023-06061-0. Epub 2023 May 17.
5
Fumarate induces vesicular release of mtDNA to drive innate immunity.
Nature. 2023 Mar;615(7952):499-506. doi: 10.1038/s41586-023-05770-w. Epub 2023 Mar 8.
7
Mechanisms driving the immunoregulatory function of cancer cells.
Nat Rev Cancer. 2023 Apr;23(4):193-215. doi: 10.1038/s41568-022-00544-4. Epub 2023 Jan 30.
8
Cellular functions of cGAS-STING signaling.
Trends Cell Biol. 2023 Aug;33(8):630-648. doi: 10.1016/j.tcb.2022.11.001. Epub 2022 Nov 24.
9
Mitochondrial control of inflammation.
Nat Rev Immunol. 2023 Mar;23(3):159-173. doi: 10.1038/s41577-022-00760-x. Epub 2022 Jul 25.
10
The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs.
Nat Rev Cancer. 2022 Jan;22(1):45-64. doi: 10.1038/s41568-021-00407-4. Epub 2021 Oct 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验