Suppr超能文献

全球基因表达谱分析与生物信息学分析揭示下调的生物标志物作为肝细胞癌的潜在指标

Global Gene Expression Profiling and Bioinformatics Analysis Reveal Downregulated Biomarkers as Potential Indicators for Hepatocellular Carcinoma.

作者信息

Mestareehi Aktham

机构信息

Department of Pharmaceutical Sciences, Faculty of Pharmacy, Isra University, P.O. Box 22, Amman 11622, Jordan.

School of Medicine, The Ohio State University, Columbus, Ohio 43202, United States.

出版信息

ACS Omega. 2024 Jun 9;9(24):26075-26096. doi: 10.1021/acsomega.4c01496. eCollection 2024 Jun 18.

Abstract

The study aimed to elucidate the significance of CLEC4G, CAMK2β, SLC22A1, CBFA2T3, and STAB2 in the prognosis of hepatocellular carcinoma (HCC) patients and their associated molecular biological characteristics. Additionally, the research sought to identify new potential biomarkers with therapeutic and diagnostic relevance for clinical applications. We utilized a publicly available high throughput phosphoproteomics and proteomics data set of HCC to focus on the analysis of 12 downregulated phosphoproteins in HCC. Our approach integrates bioinformatic analysis with pathway analysis, encompassing gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and the construction of a protein-protein interaction (PPI) network. In total, we quantified 11547 phosphorylation sites associated with 4043 phosphoproteins from a cohort of 159 HCC patients. Within this extensive data set, our specific focus was on 19 phosphorylation sites displaying significant downregulation (log FC ≤ -2 with -values < 0.0001). Remarkably, our investigation revealed distinct pathways exhibiting differential regulation across multiple dimensions, including the genomic, transcriptomic, proteomic, and phosphoproteomic levels. These pathways encompass a wide range of critical cellular processes, including cellular component organization, cell cycle control, signaling pathways, transcriptional and translational control, and metabolism. Furthermore, our bioinformatics analysis unveiled noteworthy insights into the subcellular localizations, biological processes, and molecular functions associated with these proteins and phosphoproteins. Within the context of the PPI network, we identified 12 key genes CLEC4G, STAB2, ADH1A, ADH1B, CAMK2B, ADH4, CHGB, PYGL, ADH1C, AKAP12, CBFA2T3, and SLC22A1 as the top highly interconnected hub genes. The findings related to CLEC4G, ADH1B, SLC22A1, CAMK2β, CBFA2T3, and STAB2 indicate their reduced expression in HCC, which is associated with an unfavorable prognosis. Furthermore, the results of KEGG and GO pathway analyses suggest that these genes may impact liver cancer by engaging various targets and pathways, ultimately promoting the progression of hepatocellular carcinoma. These results underscore the significant potential of CLEC4G, ADH1B, SLC22A1, CAMK2β, CBFA2T3, and STAB2 as key contributors to HCC development and advancement. This insight holds promise for identifying therapeutic targets and charting research avenues to enhance our understanding of the intricate molecular mechanisms underlying hepatocellular carcinoma.

摘要

该研究旨在阐明CLEC4G、CAMK2β、SLC22A1、CBFA2T3和STAB2在肝细胞癌(HCC)患者预后中的意义及其相关分子生物学特征。此外,该研究还试图识别具有治疗和诊断相关性的新潜在生物标志物,以用于临床应用。我们利用公开可用的HCC高通量磷酸化蛋白质组学和蛋白质组学数据集,重点分析HCC中12种下调的磷酸化蛋白质。我们的方法将生物信息学分析与通路分析相结合,包括基因本体(GO)分析、京都基因与基因组百科全书(KEGG)通路分析以及蛋白质-蛋白质相互作用(PPI)网络的构建。我们总共对来自159例HCC患者队列的4043种磷酸化蛋白质相关的11547个磷酸化位点进行了定量。在这个庞大的数据集中,我们特别关注19个显示出显著下调的磷酸化位点(log FC≤-2且p值<0.0001)。值得注意的是,我们的研究揭示了在基因组、转录组、蛋白质组和磷酸化蛋白质组等多个维度上表现出差异调节的不同通路。这些通路涵盖了广泛的关键细胞过程,包括细胞成分组织、细胞周期控制、信号通路、转录和翻译控制以及代谢。此外,我们的生物信息学分析揭示了与这些蛋白质和磷酸化蛋白质相关的亚细胞定位、生物学过程和分子功能的重要见解。在PPI网络的背景下,我们确定了12个关键基因CLEC4G、STAB2、ADH1A、ADH1B、CAMK2B、ADH4、CHGB、PYGL、ADH1C、AKAP12、CBFA2T3和SLC22A1作为高度相互连接的顶级枢纽基因。与CLEC4G、ADH1B、SLC22A1、CAMK2β、CBFA2T3和STAB2相关的研究结果表明它们在HCC中的表达降低与不良预后相关。此外,KEGG和GO通路分析结果表明,这些基因可能通过参与各种靶点和通路影响肝癌,最终促进肝细胞癌的进展。这些结果强调了CLEC4G、ADH1B、SLC22A1、CAMK2β、CBFA2T3和STAB2作为HCC发展和进展的关键因素的巨大潜力。这一见解有望识别治疗靶点并规划研究途径,以加深我们对肝细胞癌复杂分子机制的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c8b/11191119/0f09ea6a0e72/ao4c01496_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验