Cruz-Navarrete F Aaron, Griffin Wezley C, Chan Yuk-Cheung, Martin Maxwell I, Alejo Jose L, Brady Ryan A, Natchiar S Kundhavai, Knudson Isaac J, Altman Roger B, Schepartz Alanna, Miller Scott J, Blanchard Scott C
Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States.
Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States.
ACS Cent Sci. 2024 Jun 4;10(6):1262-1275. doi: 10.1021/acscentsci.4c00314. eCollection 2024 Jun 26.
Templated synthesis of proteins containing non-natural amino acids (nnAAs) promises to expand the chemical space available to biological therapeutics and materials, but existing technologies are still limiting. Addressing these limitations requires a deeper understanding of the mechanism of protein synthesis and how it is perturbed by nnAAs. Here we examine the impact of nnAAs on the formation and ribosome utilization of the central elongation substrate: the ternary complex of native, aminoacylated tRNA, thermally unstable elongation factor, and GTP. By performing ensemble and single-molecule fluorescence resonance energy transfer measurements, we reveal that both the ()- and ()-β isomers of phenylalanine (Phe) disrupt ternary complex formation to levels below in vitro detection limits, while ()- and ()-β-Phe reduce ternary complex stability by 1 order of magnitude. Consistent with these findings, ()- and ()-β-Phe-charged tRNAs were not utilized by the ribosome, while ()- and ()-β-Phe stereoisomers were utilized inefficiently. ()-β-Phe but not ()-β-Phe also exhibited order of magnitude defects in the rate of translocation after mRNA decoding. We conclude from these findings that non-natural amino acids can negatively impact the translation mechanism on multiple fronts and that the bottlenecks for improvement must include the consideration of the efficiency and stability of ternary complex formation.
模板化合成含非天然氨基酸(nnAAs)的蛋白质有望拓展生物治疗和材料可用的化学空间,但现有技术仍存在局限性。要解决这些局限性,需要更深入地了解蛋白质合成机制以及nnAAs如何对其产生干扰。在此,我们研究了nnAAs对中心延伸底物形成和核糖体利用的影响:天然氨酰化tRNA、热不稳定延伸因子和GTP的三元复合物。通过进行整体和单分子荧光共振能量转移测量,我们发现苯丙氨酸(Phe)的()-和()-β异构体均将三元复合物形成破坏至体外检测限以下水平,而()-和()-β-Phe将三元复合物稳定性降低了1个数量级。与这些发现一致,核糖体未利用()-和()-β-Phe负载的tRNA,而()-和()-β-Phe立体异构体利用效率低下。()-β-Phe而非()-β-Phe在mRNA解码后的转位速率上也表现出数量级缺陷。我们从这些发现中得出结论,非天然氨基酸可在多个方面对翻译机制产生负面影响,并且改进的瓶颈必须包括考虑三元复合物形成的效率和稳定性。