Suppr超能文献

协同膦-光氧化还原催化实现了唑类的N-H活化用于分子间烯烃氢胺化反应。

Cooperative Phosphine-Photoredox Catalysis Enables N-H Activation of Azoles for Intermolecular Olefin Hydroamination.

作者信息

Sedillo Kassandra, Fan Flora, Knowles Robert R, Doyle Abigail G

机构信息

Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.

Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States.

出版信息

J Am Chem Soc. 2024 Jul 24;146(29):20349-20356. doi: 10.1021/jacs.4c05881. Epub 2024 Jul 10.

Abstract

Catalytic intermolecular olefin hydroamination is an enabling synthetic strategy that offers direct and atom-economical access to a variety of nitrogen-containing compounds from abundant feedstocks. However, despite numerous advances in catalyst design and reaction development, hydroamination of N-H azoles with unactivated olefins remains an unsolved problem in synthesis. We report a dual phosphine and photoredox catalytic protocol for the hydroamination of numerous structurally diverse and medicinally relevant N-H azoles with unactivated olefins. Hydroamination proceeds with high anti-Markovnikov regioselectivity and -site selectivity. The mild conditions and high functional group tolerance of the reaction permit the rapid construction of molecular complexity and late-stage functionalization of bioactive compounds. N-H bond activation is proposed to proceed via polar addition of the N-H azole to a phosphine radical cation, followed by P-N α-scission from a phosphoranyl radical intermediate. Reactivity and -site selectivity are classified by azole N-H BDFE and nitrogen-centered radical spin density, respectively, which can serve as a useful predictive aid in extending the reaction to unseen azoles.

摘要

催化分子间烯烃氢胺化是一种可行的合成策略,它能从丰富的原料直接且原子经济地合成各种含氮化合物。然而,尽管在催化剂设计和反应开发方面取得了诸多进展,但未活化烯烃与N-H唑的氢胺化反应在合成中仍是一个未解决的问题。我们报道了一种双膦和光氧化还原催化方案,用于多种结构多样且具有药用相关性的N-H唑与未活化烯烃的氢胺化反应。氢胺化反应具有高反马氏区域选择性和位点选择性。该反应温和的条件和高官能团耐受性使得能够快速构建分子复杂性并实现生物活性化合物的后期官能团化。我们提出N-H键活化是通过N-H唑向膦自由基阳离子的极性加成,然后从磷鎓自由基中间体进行P-N α-断裂来进行的。反应性和位点选择性分别由唑N-H键离解能和以氮为中心的自由基自旋密度来分类,这在将该反应扩展到未见过的唑类时可作为有用的预测辅助手段。

相似文献

1
Cooperative Phosphine-Photoredox Catalysis Enables N-H Activation of Azoles for Intermolecular Olefin Hydroamination.
J Am Chem Soc. 2024 Jul 24;146(29):20349-20356. doi: 10.1021/jacs.4c05881. Epub 2024 Jul 10.
3
A General Approach to Catalytic Alkene Anti-Markovnikov Hydrofunctionalization Reactions via Acridinium Photoredox Catalysis.
Acc Chem Res. 2016 Sep 20;49(9):1997-2006. doi: 10.1021/acs.accounts.6b00304. Epub 2016 Sep 2.
4
Catalytic intermolecular hydroaminations of unactivated olefins with secondary alkyl amines.
Science. 2017 Feb 17;355(6326):727-730. doi: 10.1126/science.aal3010.
5
CuH-Catalyzed Olefin Functionalization: From Hydroamination to Carbonyl Addition.
Acc Chem Res. 2020 Jun 16;53(6):1229-1243. doi: 10.1021/acs.accounts.0c00164. Epub 2020 May 13.
6
Catalytic asymmetric addition of an amine N-H bond across internal alkenes.
Nature. 2020 Dec;588(7837):254-260. doi: 10.1038/s41586-020-2919-z. Epub 2020 Nov 3.
7
Organic Synthesis Away from Equilibrium: Contrathermodynamic Transformations Enabled by Excited-State Electron Transfer.
Acc Chem Res. 2024 Jul 2;57(13):1827-1838. doi: 10.1021/acs.accounts.4c00227. Epub 2024 Jun 21.
8
Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp)-H Cross-Coupling.
Acc Chem Res. 2021 Feb 16;54(4):988-1000. doi: 10.1021/acs.accounts.0c00694. Epub 2021 Jan 29.
9
Catalytic olefin hydroamination with aminium radical cations: a photoredox method for direct C-N bond formation.
J Am Chem Soc. 2014 Sep 3;136(35):12217-20. doi: 10.1021/ja5056774. Epub 2014 Aug 19.
10
Generation of Phosphoranyl Radicals via Photoredox Catalysis Enables Voltage-Independent Activation of Strong C-O Bonds.
ACS Catal. 2018 Dec 7;8(12):11134-11139. doi: 10.1021/acscatal.8b03592. Epub 2018 Oct 18.

引用本文的文献

1
Photo-induced dehalogenative deuteration and elimination of alkyl halides enabled by phosphine-mediated halogen-atom transfer.
Chem Sci. 2025 Feb 27;16(14):5967-5975. doi: 10.1039/d5sc00026b. eCollection 2025 Apr 2.
2
Biomimetic Dehydrogenative Intermolecular Formal Allylic Amidation of Branched α-Olefins.
Adv Sci (Weinh). 2025 Jan;12(2):e2411744. doi: 10.1002/advs.202411744. Epub 2024 Nov 18.

本文引用的文献

1
An insight into the structure-activity relationship studies of anticancer medicinal attributes of 7-azaindole derivatives: a review.
Future Med Chem. 2023 Dec;15(24):2309-2323. doi: 10.4155/fmc-2023-0216. Epub 2023 Dec 19.
2
Generation of Aromatic N-Heterocyclic Radicals for Functionalization of Unactivated Alkenes.
Angew Chem Int Ed Engl. 2023 Dec 21;62(52):e202314312. doi: 10.1002/anie.202314312. Epub 2023 Nov 22.
3
Photocatalytic Anti-Markovnikov Hydroamination of Alkenes with Primary Heteroaryl Amines.
J Am Chem Soc. 2023 Oct 11;145(40):21738-21744. doi: 10.1021/jacs.3c08428. Epub 2023 Oct 3.
4
Progression of Hydroamination Catalyzed by Late Transition-Metal Complexes from Activated to Unactivated Alkenes.
Acc Chem Res. 2023 Jun 20;56(12):1565-1577. doi: 10.1021/acs.accounts.3c00141. Epub 2023 Jun 5.
5
Radical philicity and its role in selective organic transformations.
Nat Rev Chem. 2021 Jul;5(7):486-499. doi: 10.1038/s41570-021-00284-3. Epub 2021 Jun 22.
6
Recent advances in visible light-induced C( )-N bond formation.
Nat Rev Chem. 2022 Aug;6(8):544-561. doi: 10.1038/s41570-022-00403-8. Epub 2022 Jul 11.
8
Nitrogen-Centered Radicals in Functionalization of sp Systems: Generation, Reactivity, and Applications in Synthesis.
Chem Rev. 2022 May 11;122(9):8181-8260. doi: 10.1021/acs.chemrev.1c00831. Epub 2022 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验