Sedillo Kassandra, Fan Flora, Knowles Robert R, Doyle Abigail G
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.
Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States.
J Am Chem Soc. 2024 Jul 24;146(29):20349-20356. doi: 10.1021/jacs.4c05881. Epub 2024 Jul 10.
Catalytic intermolecular olefin hydroamination is an enabling synthetic strategy that offers direct and atom-economical access to a variety of nitrogen-containing compounds from abundant feedstocks. However, despite numerous advances in catalyst design and reaction development, hydroamination of N-H azoles with unactivated olefins remains an unsolved problem in synthesis. We report a dual phosphine and photoredox catalytic protocol for the hydroamination of numerous structurally diverse and medicinally relevant N-H azoles with unactivated olefins. Hydroamination proceeds with high anti-Markovnikov regioselectivity and -site selectivity. The mild conditions and high functional group tolerance of the reaction permit the rapid construction of molecular complexity and late-stage functionalization of bioactive compounds. N-H bond activation is proposed to proceed via polar addition of the N-H azole to a phosphine radical cation, followed by P-N α-scission from a phosphoranyl radical intermediate. Reactivity and -site selectivity are classified by azole N-H BDFE and nitrogen-centered radical spin density, respectively, which can serve as a useful predictive aid in extending the reaction to unseen azoles.
催化分子间烯烃氢胺化是一种可行的合成策略,它能从丰富的原料直接且原子经济地合成各种含氮化合物。然而,尽管在催化剂设计和反应开发方面取得了诸多进展,但未活化烯烃与N-H唑的氢胺化反应在合成中仍是一个未解决的问题。我们报道了一种双膦和光氧化还原催化方案,用于多种结构多样且具有药用相关性的N-H唑与未活化烯烃的氢胺化反应。氢胺化反应具有高反马氏区域选择性和位点选择性。该反应温和的条件和高官能团耐受性使得能够快速构建分子复杂性并实现生物活性化合物的后期官能团化。我们提出N-H键活化是通过N-H唑向膦自由基阳离子的极性加成,然后从磷鎓自由基中间体进行P-N α-断裂来进行的。反应性和位点选择性分别由唑N-H键离解能和以氮为中心的自由基自旋密度来分类,这在将该反应扩展到未见过的唑类时可作为有用的预测辅助手段。