Suppr超能文献

用于跨生物界生物膜中香芹酚传递的表面电荷调控制高分子纳米乳剂。

Surface-Charge Tuned Polymeric Nanoemulsions for Carvacrol Delivery in Interkingdom Biofilms.

机构信息

Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States.

Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

出版信息

ACS Appl Mater Interfaces. 2024 Jul 24;16(29):37613-37622. doi: 10.1021/acsami.4c06618. Epub 2024 Jul 15.

Abstract

Biofilms, intricate microbial communities entrenched in extracellular polymeric substance (EPS) matrices, pose formidable challenges in infectious disease treatment, especially in the context of interkingdom biofilms prevalent in the oral environment. This study investigates the potential of carvacrol-loaded biodegradable nanoemulsions (NEs) with systematically varied surface charges─cationic guanidinium (GMT-NE) and anionic carboxylate (CMT-NE). Zeta potentials of +25 mV (GMT-NE) and -33 mV (CMT-NE) underscore successful nanoemulsion fabrication (∼250 nm). Fluorescent labeling and dynamic tracking across three dimensions expose GMT-NE's superior diffusion into oral biofilms, yielding a robust antimicrobial effect with 99.99% killing for both streptococcal and species and marked reductions in bacterial cell viability compared to CMT-NE (∼4-log reduction). Oral mucosa tissue cultures affirm the biocompatibility of both NEs with no morphological or structural changes, showcasing their potential for combating intractable biofilm infections in oral environment. This study advances our understanding of NE surface charges and their interactions within interkingdom biofilms, providing insights crucial for addressing complex infections involving bacteria and fungi in the demanding oral context.

摘要

生物膜是一种复杂的微生物群落,嵌入在细胞外多聚物基质中,给传染性疾病的治疗带来了巨大的挑战,特别是在口腔环境中普遍存在的跨界生物膜的情况下。本研究调查了负载香芹酚的可生物降解纳米乳(NE)的潜力,这些 NE 具有系统变化的表面电荷-阳离子胍基(GMT-NE)和阴离子羧酸盐(CMT-NE)。+25 mV(GMT-NE)和-33 mV(CMT-NE)的 ζ 电位突显了成功的纳米乳制备(约 250nm)。通过荧光标记和三维动态追踪,GMT-NE 能够更好地扩散到口腔生物膜中,表现出强大的抗菌作用,对链球菌和真菌的杀灭率达到 99.99%,与 CMT-NE 相比,细菌细胞活力显著降低(约 4 对数减少)。口腔黏膜组织培养证实了两种 NE 的生物相容性,没有形态或结构上的变化,展示了它们在口腔环境中对抗难以治疗的生物膜感染的潜力。本研究增进了我们对 NE 表面电荷及其在跨界生物膜内相互作用的理解,为解决涉及细菌和真菌的复杂感染提供了关键的见解,这些感染在苛刻的口腔环境中具有挑战性。

相似文献

1
Surface-Charge Tuned Polymeric Nanoemulsions for Carvacrol Delivery in Interkingdom Biofilms.
ACS Appl Mater Interfaces. 2024 Jul 24;16(29):37613-37622. doi: 10.1021/acsami.4c06618. Epub 2024 Jul 15.
4
Biodegradable Poly(lactic acid) Stabilized Nanoemulsions for the Treatment of Multidrug-Resistant Bacterial Biofilms.
ACS Appl Mater Interfaces. 2021 Sep 1;13(34):40325-40331. doi: 10.1021/acsami.1c11265. Epub 2021 Aug 20.
5
The anti-biofilm efficacy of copper and zinc doped borate bioactive glasses.
Future Microbiol. 2024;19(14):1229-1242. doi: 10.1080/17460913.2024.2398410. Epub 2024 Sep 13.
7
Systematic review of silver and vanadium-based antibiofilm agents: mechanisms and efficacy in oral biofilms.
Future Microbiol. 2025 Jul;20(10):639-655. doi: 10.1080/17460913.2025.2520080. Epub 2025 Jun 22.
8
Multifaceted roles of and in contributing to polybiofilm infections in early childhood caries.
Front Cell Infect Microbiol. 2025 Jun 27;15:1625103. doi: 10.3389/fcimb.2025.1625103. eCollection 2025.
10
Non-disruptive matrix turnover is a conserved feature of biofilm aggregate growth in paradigm pathogenic species.
mBio. 2025 Mar 12;16(3):e0393524. doi: 10.1128/mbio.03935-24. Epub 2025 Feb 21.

引用本文的文献

1
Recent Advances in Cationic Nanoemulsions for Drug Delivery: Preparation, Properties, and Applications.
Curr Pharm Des. 2025;31(28):2267-2281. doi: 10.2174/0113816128357859250121120216.

本文引用的文献

1
Candida-bacterial cross-kingdom interactions.
Trends Microbiol. 2023 Dec;31(12):1287-1299. doi: 10.1016/j.tim.2023.08.003. Epub 2023 Aug 26.
3
Current and prospective therapeutic strategies: tackling and cross-kingdom biofilm.
Front Cell Infect Microbiol. 2023 May 11;13:1106231. doi: 10.3389/fcimb.2023.1106231. eCollection 2023.
4
Carvacrol-A Natural Phenolic Compound with Antimicrobial Properties.
Antibiotics (Basel). 2023 Apr 27;12(5):824. doi: 10.3390/antibiotics12050824.
5
Understanding bacterial biofilms: From definition to treatment strategies.
Front Cell Infect Microbiol. 2023 Apr 6;13:1137947. doi: 10.3389/fcimb.2023.1137947. eCollection 2023.
6
The biofilm matrix: multitasking in a shared space.
Nat Rev Microbiol. 2023 Feb;21(2):70-86. doi: 10.1038/s41579-022-00791-0. Epub 2022 Sep 20.
7
Dual antimicrobial-loaded biodegradable nanoemulsions for synergistic treatment of wound biofilms.
J Control Release. 2022 Jul;347:379-388. doi: 10.1016/j.jconrel.2022.05.013. Epub 2022 May 18.
8
Metabolic Reconfiguration Activates Stemness and Immunomodulation of PDLSCs.
Int J Mol Sci. 2022 Apr 6;23(7):4038. doi: 10.3390/ijms23074038.
9
Tackling the emerging threat of antifungal resistance to human health.
Nat Rev Microbiol. 2022 Sep;20(9):557-571. doi: 10.1038/s41579-022-00720-1. Epub 2022 Mar 29.
10
Polymers as advanced antibacterial and antibiofilm agents for direct and combination therapies.
Chem Sci. 2021 Dec 16;13(2):345-364. doi: 10.1039/d1sc05835e. eCollection 2022 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验