Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA.
Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA.
Nature. 2024 Aug;632(8024):451-459. doi: 10.1038/s41586-024-07743-z. Epub 2024 Jul 31.
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are essential for pacemaking activity and neural signalling. Drugs inhibiting HCN1 are promising candidates for management of neuropathic pain and epileptic seizures. The general anaesthetic propofol (2,6-di-iso-propylphenol) is a known HCN1 allosteric inhibitor with unknown structural basis. Here, using single-particle cryo-electron microscopy and electrophysiology, we show that propofol inhibits HCN1 by binding to a mechanistic hotspot in a groove between the S5 and S6 transmembrane helices. We found that propofol restored voltage-dependent closing in two HCN1 epilepsy-associated polymorphisms that act by destabilizing the channel closed state: M305L, located in the propofol-binding site in S5, and D401H in S6 (refs. ). To understand the mechanism of propofol inhibition and restoration of voltage-gating, we tracked voltage-sensor movement in spHCN channels and found that propofol inhibition is independent of voltage-sensor conformational changes. Mutations at the homologous methionine in spHCN and an adjacent conserved phenylalanine in S6 similarly destabilize closing without disrupting voltage-sensor movements, indicating that voltage-dependent closure requires this interface intact. We propose a model for voltage-dependent gating in which propofol stabilizes coupling between the voltage sensor and pore at this conserved methionine-phenylalanine interface in HCN channels. These findings unlock potential exploitation of this site to design specific drugs targeting HCN channelopathies.
超极化激活环核苷酸门控 (HCN) 通道对于起搏活动和神经信号传递至关重要。抑制 HCN1 的药物是治疗神经性疼痛和癫痫发作的有前途的候选药物。全身麻醉药异丙酚(2,6-二异丙基苯酚)是一种已知的 HCN1 变构抑制剂,但结构基础尚不清楚。在这里,我们使用单颗粒冷冻电子显微镜和电生理学方法表明,异丙酚通过与 S5 和 S6 跨膜螺旋之间凹槽中的机械热点结合来抑制 HCN1。我们发现,异丙酚恢复了两种 HCN1 癫痫相关突变体的电压依赖性关闭,这两种突变体通过使通道关闭状态不稳定而起作用:位于 S5 中异丙酚结合位点的 M305L 和 S6 中的 D401H(参考文献)。为了了解异丙酚抑制和电压门控恢复的机制,我们在 spHCN 通道中跟踪电压传感器的运动,发现异丙酚抑制与电压传感器构象变化无关。spHCN 中的同源蛋氨酸和 S6 中相邻保守苯丙氨酸的突变同样会破坏关闭而不破坏电压传感器的运动,这表明电压依赖性关闭需要这个界面完整。我们提出了一个电压依赖性门控模型,其中异丙酚稳定了 HCN 通道中该保守的蛋氨酸-苯丙氨酸界面上电压传感器和孔之间的耦合。这些发现为设计针对 HCN 通道病的特定药物利用该位点提供了潜力。