Suppr超能文献

肝脏表达数量性状基因座元分析揭示了心脏代谢特征的潜在分子机制。

Liver eQTL meta-analysis illuminates potential molecular mechanisms of cardiometabolic traits.

机构信息

Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.

Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA; Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA.

出版信息

Am J Hum Genet. 2024 Sep 5;111(9):1899-1913. doi: 10.1016/j.ajhg.2024.07.017. Epub 2024 Aug 21.

Abstract

Understanding the molecular mechanisms of complex traits is essential for developing targeted interventions. We analyzed liver expression quantitative-trait locus (eQTL) meta-analysis data on 1,183 participants to identify conditionally distinct signals. We found 9,013 eQTL signals for 6,564 genes; 23% of eGenes had two signals, and 6% had three or more signals. We then integrated the eQTL results with data from 29 cardiometabolic genome-wide association study (GWAS) traits and identified 1,582 GWAS-eQTL colocalizations for 747 eGenes. Non-primary eQTL signals accounted for 17% of all colocalizations. Isolating signals by conditional analysis prior to coloc resulted in 37% more colocalizations than using marginal eQTL and GWAS data, highlighting the importance of signal isolation. Isolating signals also led to stronger evidence of colocalization: among 343 eQTL-GWAS signal pairs in multi-signal regions, analyses that isolated the signals of interest resulted in higher posterior probability of colocalization for 41% of tests. Leveraging allelic heterogeneity, we predicted causal effects of gene expression on liver traits for four genes. To predict functional variants and regulatory elements, we colocalized eQTL with liver chromatin accessibility QTL (caQTL) and found 391 colocalizations, including 73 with non-primary eQTL signals and 60 eQTL signals that colocalized with both a caQTL and a GWAS signal. Finally, we used publicly available massively parallel reporter assays in HepG2 to highlight 14 eQTL signals that include at least one expression-modulating variant. This multi-faceted approach to unraveling the genetic underpinnings of liver-related traits could lead to therapeutic development.

摘要

理解复杂性状的分子机制对于开发靶向干预措施至关重要。我们分析了 1183 名参与者的肝脏表达数量性状基因座(eQTL)荟萃分析数据,以识别条件性差异信号。我们发现了 6564 个基因的 9013 个 eQTL 信号;23%的 eGenes 有两个信号,6%有三个或更多信号。然后,我们将 eQTL 结果与 29 个心脏代谢全基因组关联研究(GWAS)性状的数据进行整合,确定了 747 个 eGenes 的 1582 个 GWAS-eQTL 共定位。非主要 eQTL 信号占所有共定位的 17%。在共定位之前通过条件分析分离信号比使用边缘 eQTL 和 GWAS 数据导致 37%的共定位增加,突出了信号分离的重要性。分离信号还导致了更强的共定位证据:在多信号区域的 343 个 eQTL-GWAS 信号对中,对感兴趣的信号进行分离分析的结果导致 41%的测试的共定位后验概率更高。利用等位基因异质性,我们预测了四个基因的基因表达对肝脏性状的因果影响。为了预测基因表达的功能变体和调控元件,我们将 eQTL 与肝脏染色质可及性 QTL(caQTL)进行了共定位,发现了 391 个共定位,包括 73 个非主要 eQTL 信号和 60 个 eQTL 信号与 caQTL 和 GWAS 信号共定位。最后,我们使用 HepG2 中的公共大规模平行报告测定法来突出 14 个 eQTL 信号,其中至少包含一个表达调节变体。这种多方面的方法可以揭示与肝脏相关的性状的遗传基础,并可能导致治疗方法的发展。

相似文献

1
Liver eQTL meta-analysis illuminates potential molecular mechanisms of cardiometabolic traits.
Am J Hum Genet. 2024 Sep 5;111(9):1899-1913. doi: 10.1016/j.ajhg.2024.07.017. Epub 2024 Aug 21.
5
Adipose Tissue Gene Expression Associations Reveal Hundreds of Candidate Genes for Cardiometabolic Traits.
Am J Hum Genet. 2019 Oct 3;105(4):773-787. doi: 10.1016/j.ajhg.2019.09.001. Epub 2019 Sep 26.
6
Multi-Omics Analysis for Identifying Cell-Type-Specific Druggable Targets in Alzheimer's Disease.
medRxiv. 2025 Jan 9:2025.01.08.25320199. doi: 10.1101/2025.01.08.25320199.
9
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
10
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.

引用本文的文献

1
Transcriptome-wide root causal inference.
PLoS Comput Biol. 2025 Sep 2;21(9):e1013461. doi: 10.1371/journal.pcbi.1013461. eCollection 2025 Sep.
2
Higher eQTL power reveals signals that boost GWAS colocalization.
bioRxiv. 2025 Aug 5:2025.08.05.668745. doi: 10.1101/2025.08.05.668745.

本文引用的文献

1
DrugBank 6.0: the DrugBank Knowledgebase for 2024.
Nucleic Acids Res. 2024 Jan 5;52(D1):D1265-D1275. doi: 10.1093/nar/gkad976.
2
The IUPHAR/BPS Guide to PHARMACOLOGY in 2024.
Nucleic Acids Res. 2024 Jan 5;52(D1):D1438-D1449. doi: 10.1093/nar/gkad944.
3
Annotating and prioritizing human non-coding variants with RegulomeDB v.2.
Nat Genet. 2023 May;55(5):724-726. doi: 10.1038/s41588-023-01365-3.
4
Meta-analysis fine-mapping is often miscalibrated at single-variant resolution.
Cell Genom. 2022 Dec 14;2(12). doi: 10.1016/j.xgen.2022.100210. Epub 2022 Nov 4.
5
Pharos 2023: an integrated resource for the understudied human proteome.
Nucleic Acids Res. 2023 Jan 6;51(D1):D1405-D1416. doi: 10.1093/nar/gkac1033.
6
Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants.
Nat Genet. 2022 Dec;54(12):1803-1815. doi: 10.1038/s41588-022-01233-6. Epub 2022 Dec 6.
7
The next-generation Open Targets Platform: reimagined, redesigned, rebuilt.
Nucleic Acids Res. 2023 Jan 6;51(D1):D1353-D1359. doi: 10.1093/nar/gkac1046.
8
A resource for integrated genomic analysis of the human liver.
Sci Rep. 2022 Sep 7;12(1):15151. doi: 10.1038/s41598-022-18506-z.
9
ILRUN Promotes Atherosclerosis Through Lipid-Dependent and Lipid-Independent Factors.
Arterioscler Thromb Vasc Biol. 2022 Sep;42(9):1139-1151. doi: 10.1161/ATVBAHA.121.317156. Epub 2022 Jul 14.
10
Fine-mapping from summary data with the "Sum of Single Effects" model.
PLoS Genet. 2022 Jul 19;18(7):e1010299. doi: 10.1371/journal.pgen.1010299. eCollection 2022 Jul.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验