Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
Division of Clinical Studies, The Institute of Cancer Research, London, UK.
Cancer Lett. 2024 Nov 1;604:217263. doi: 10.1016/j.canlet.2024.217263. Epub 2024 Sep 21.
Approximately 50 % of poor prognosis neuroblastomas arise due to MYCN over-expression. We previously demonstrated that MYCN and PRMT5 proteins interact and PRMT5 knockdown led to apoptosis of MYCN-amplified (MNA) neuroblastoma. Here we evaluate the highly selective first-in-class PRMT5 inhibitor GSK3203591 and its in vivo analogue GSK3326593 as targeted therapeutics for MNA neuroblastoma. Cell-line analyses show MYCN-dependent growth inhibition and apoptosis, with approximately 200-fold greater sensitivity of MNA neuroblastoma lines. RNA sequencing of three MNA neuroblastoma lines treated with GSK3203591 reveal deregulated MYCN transcriptional programmes and altered mRNA splicing, converging on key regulatory pathways such as DNA damage response, epitranscriptomics and cellular metabolism. Stable isotope labelling experiments in the same cell lines demonstrate that glutamine metabolism is impeded following GSK3203591 treatment, linking with disruption of the MLX/Mondo nutrient sensors via intron retention of MLX mRNA. Interestingly, glutaminase (GLS) protein decreases after GSK3203591 treatment despite unchanged transcript levels. We demonstrate that the RNA methyltransferase METTL3 and cognate reader YTHDF3 proteins are lowered following their mRNAs undergoing GSK3203591-induced splicing alterations, indicating epitranscriptomic regulation of GLS; accordingly, we observe decreases of GLS mRNA m6A methylation following GSK3203591 treatment, and decreased GLS protein following YTHDF3 knockdown. In vivo efficacy of GSK3326593 is confirmed by increased survival of Th-MYCN mice, with drug treatment triggering splicing events and protein decreases consistent with in vitro data. Together our study demonstrates the PRMT5-dependent spliceosomal vulnerability of MNA neuroblastoma and identifies the epitranscriptome and glutamine metabolism as critical determinants of this sensitivity.
大约 50%预后不良的神经母细胞瘤是由于 MYCN 过表达引起的。我们之前证明 MYCN 和 PRMT5 蛋白相互作用,PRMT5 敲低导致 MYCN 扩增(MNA)神经母细胞瘤凋亡。在这里,我们评估了高度选择性的首个 PRMT5 抑制剂 GSK3203591 及其体内类似物 GSK3326593 作为 MNA 神经母细胞瘤的靶向治疗药物。细胞系分析表明,MYCN 依赖性生长抑制和凋亡,MNA 神经母细胞瘤系的敏感性约提高了 200 倍。用 GSK3203591 处理的三种 MNA 神经母细胞瘤系的 RNA 测序显示,MYCN 转录程序失调和 mRNA 剪接改变,集中在关键的调节途径,如 DNA 损伤反应、表观转录组学和细胞代谢。相同细胞系的稳定同位素标记实验表明,GSK3203591 处理后,谷氨酰胺代谢受到阻碍,通过 MLX mRNA 内含子保留与 MLX/Mondo 营养传感器的破坏相关联。有趣的是,尽管转录本水平不变,但 GSK3203591 处理后 GLN 酶(GLS)蛋白减少。我们证明,RNA 甲基转移酶 METTL3 和相应的阅读器 YTHDF3 蛋白在其 mRNA 发生 GSK3203591 诱导的剪接改变后降低,表明 GLS 的表观转录组调节;因此,我们观察到 GSK3203591 处理后 GLS mRNA m6A 甲基化减少,YTHDF3 敲低后 GLS 蛋白减少。GSK3326593 的体内疗效通过增加 Th-MYCN 小鼠的存活率得到证实,药物治疗触发剪接事件和与体外数据一致的蛋白减少。总的来说,我们的研究表明 MNA 神经母细胞瘤的 PRMT5 依赖性剪接体易感性,并确定了表观转录组和谷氨酰胺代谢作为这种敏感性的关键决定因素。