Breast Cancer Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas-CNIO, Melchor Fernández Almagro, 3, Madrid, 28029, Spain.
Genome Med. 2024 Oct 7;16(1):116. doi: 10.1186/s13073-024-01387-4.
Epigenetic clocks are mathematical models used to estimate epigenetic age based on DNA methylation at specific CpG sites. As new methylation microarrays are developed and older models discontinued, existing epigenetic clocks might become obsolete. Here, we explored the effects of the changes introduced in the new EPICv2 DNA methylation array on existing epigenetic clocks.
We tested the performance of four epigenetic clocks on the probeset of the EPICv2 array using a dataset of 10,835 samples. We developed a new epigenetic age prediction model compatible across the 450 k, EPICv1, and EPICv2 microarrays and validated it on 2095 samples. We estimated technical noise and intra-subject variation using two datasets with repeated sampling. We used data from (i) cancer survivors who had undergone different therapies, (ii) breast cancer patients and controls, and (iii) an exercise-based interventional study, to test the ability of our model to detect alterations in epigenetic age acceleration in response to theoretically antiaging interventions.
The results of the four epiclocks tested are significantly distorted by the EPICv2 probeset, causing an average difference of up to 25 years. Our new model produced highly accurate chronological age predictions, comparable to a state-of-the-art epiclock. The model reported the lowest epigenetic age acceleration in normal populations, as well as the lowest variation across technical replicates and repeated samples from the same subjects. Finally, our model reproduced previous results of increased epigenetic age acceleration in cancer patients and in survivors treated with radiation therapy, and no changes from exercise-based interventions.
Existing epigenetic clocks require updates for full EPICv2 compatibility. Our new model translates the capabilities of state-of-the-art epigenetic clocks to the EPICv2 platform and is cross-compatible with older microarrays. The characterization of epigenetic age prediction variation provides useful metrics to contextualize the relevance of epigenetic age alterations. The analysis of data from subjects influenced by radiation, cancer, and exercise-based interventions shows that despite being good predictors of chronological age, neither a pathological state like breast cancer, a hazardous environmental factor (radiation), nor exercise (a beneficial intervention) caused significant changes in the values of the "epigenetic age" determined by these first-generation models.
表观遗传时钟是一种基于特定 CpG 位点的 DNA 甲基化来估计表观遗传年龄的数学模型。随着新的甲基化微阵列的开发和旧模型的停用,现有的表观遗传时钟可能会变得过时。在这里,我们探讨了新的 EPICv2 DNA 甲基化阵列中引入的变化对现有表观遗传时钟的影响。
我们使用包含 10835 个样本的数据集,在 EPICv2 阵列的探针组上测试了四个表观遗传时钟的性能。我们开发了一个新的跨 450k、EPICv1 和 EPICv2 微阵列的表观遗传年龄预测模型,并在 2095 个样本上进行了验证。我们使用具有重复采样的两个数据集来估计技术噪声和个体内变异。我们使用来自 (i) 接受不同治疗的癌症幸存者、(ii) 乳腺癌患者和对照者、和 (iii) 基于运动的干预性研究的数据,来测试我们的模型是否能够检测到理论上抗衰老干预措施对表观遗传年龄加速的改变。
测试的四个 epiclocks 的结果被 EPICv2 探针组严重扭曲,导致平均差异高达 25 年。我们的新模型产生了高度准确的实际年龄预测,与最先进的 epiclock 相当。该模型报告了正常人群中最低的表观遗传年龄加速,以及在技术重复和来自同一受试者的重复样本中最低的变异。最后,我们的模型再现了先前在癌症患者和接受放射治疗的幸存者中观察到的表观遗传年龄加速增加的结果,以及基于运动的干预措施没有变化。
现有的表观遗传时钟需要更新以完全兼容 EPICv2。我们的新模型将最先进的表观遗传时钟的功能转化为 EPICv2 平台,并与旧的微阵列兼容。对表观遗传年龄预测变异的特征分析提供了有用的指标来将表观遗传年龄改变的相关性置于上下文中。对受辐射、癌症和基于运动的干预影响的受试者的数据进行分析表明,尽管这些第一代模型是实际年龄的良好预测指标,但像乳腺癌这样的病理状态、辐射这样的有害环境因素,以及运动(一种有益的干预措施)都没有导致这些模型确定的“表观遗传年龄”值发生显著变化。