Suppr超能文献

提高基于症状的健康检查中的诊断准确性:一种结合临床病例和基准测试的综合机器学习方法。

Enhancing diagnostic accuracy in symptom-based health checkers: a comprehensive machine learning approach with clinical vignettes and benchmarking.

作者信息

Aissaoui Ferhi Leila, Ben Amar Manel, Choubani Fethi, Bouallegue Ridha

机构信息

Virtual University of Tunis, Tunis, Tunisia.

Innov'Com Laboratory at SUPCOM, University of Carthage, Carthage, Tunisia.

出版信息

Front Artif Intell. 2024 Oct 1;7:1397388. doi: 10.3389/frai.2024.1397388. eCollection 2024.

Abstract

INTRODUCTION

The development of machine learning models for symptom-based health checkers is a rapidly evolving area with significant implications for healthcare. Accurate and efficient diagnostic tools can enhance patient outcomes and optimize healthcare resources. This study focuses on evaluating and optimizing machine learning models using a dataset of 10 diseases and 9,572 samples.

METHODS

The dataset was divided into training and testing sets to facilitate model training and evaluation. The following models were selected and optimized: Decision Tree, Random Forest, Naive Bayes, Logistic Regression and K-Nearest Neighbors. Evaluation metrics included accuracy, F1 scores, and 10-fold cross-validation. ROC-AUC and precision-recall curves were also utilized to assess model performance, particularly in scenarios with imbalanced datasets. Clinical vignettes were employed to gauge the real-world applicability of the models.

RESULTS

The performance of the models was evaluated using accuracy, F1 scores, and 10-fold cross-validation. The use of ROC-AUC curves revealed that model performance improved with increasing complexity. Precision-recall curves were particularly useful in evaluating model sensitivity in imbalanced dataset scenarios. Clinical vignettes demonstrated the robustness of the models in providing accurate diagnoses.

DISCUSSION

The study underscores the importance of comprehensive model evaluation techniques. The use of clinical vignette testing and analysis of ROC-AUC and precision-recall curves are crucial in ensuring the reliability and sensitivity of symptom-based health checkers. These techniques provide a more nuanced understanding of model performance and highlight areas for further improvement.

CONCLUSION

This study highlights the significance of employing diverse evaluation metrics and methods to ensure the robustness and accuracy of machine learning models in symptom-based health checkers. The integration of clinical vignettes and the analysis of ROC-AUC and precision-recall curves are essential steps in developing reliable and sensitive diagnostic tools.

摘要

引言

基于症状的健康检查器的机器学习模型开发是一个快速发展的领域,对医疗保健具有重大影响。准确高效的诊断工具可以改善患者治疗效果并优化医疗资源。本研究聚焦于使用包含10种疾病和9572个样本的数据集评估和优化机器学习模型。

方法

将数据集划分为训练集和测试集,以利于模型训练和评估。选择并优化了以下模型:决策树、随机森林、朴素贝叶斯、逻辑回归和K近邻。评估指标包括准确率、F1分数和10折交叉验证。还利用ROC-AUC和精确召回曲线来评估模型性能,特别是在数据集不平衡的情况下。采用临床案例来衡量模型的实际适用性。

结果

使用准确率、F1分数和10折交叉验证对模型性能进行评估。ROC-AUC曲线的使用表明,模型性能随着复杂度的增加而提高。精确召回曲线在评估不平衡数据集情况下的模型敏感性方面特别有用。临床案例证明了模型在提供准确诊断方面的稳健性。

讨论

该研究强调了综合模型评估技术的重要性。使用临床案例测试以及对ROC-AUC和精确召回曲线的分析对于确保基于症状的健康检查器的可靠性和敏感性至关重要。这些技术能更细致地理解模型性能,并突出需要进一步改进的领域。

结论

本研究强调了采用多种评估指标和方法以确保基于症状的健康检查器中机器学习模型的稳健性和准确性的重要性。整合临床案例以及对ROC-AUC和精确召回曲线的分析是开发可靠且灵敏的诊断工具的关键步骤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验