Suppr超能文献

在氧化应激条件下,两种F-box蛋白对BACH1四级结构降解子的识别。

Recognition of BACH1 quaternary structure degrons by two F-box proteins under oxidative stress.

作者信息

Cao Shiyun, Garcia Sheena Faye, Shi Huigang, James Ellie I, Kito Yuki, Shi Hui, Mao Haibin, Kaisari Sharon, Rona Gergely, Deng Sophia, Goldberg Hailey V, Ponce Jackeline, Ueberheide Beatrix, Lignitto Luca, Guttman Miklos, Pagano Michele, Zheng Ning

机构信息

Department of Pharmacology, University of Washington, Box 357280, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.

Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA.

出版信息

Cell. 2024 Dec 26;187(26):7568-7584.e22. doi: 10.1016/j.cell.2024.10.012. Epub 2024 Nov 5.

Abstract

Ubiquitin-dependent proteolysis regulates diverse cellular functions with high substrate specificity, which hinges on the ability of ubiquitin E3 ligases to decode the targets' degradation signals, i.e., degrons. Here, we show that BACH1, a transcription repressor of antioxidant response genes, features two distinct unconventional degrons encrypted in the quaternary structure of its homodimeric BTB domain. These two degrons are both functionalized by oxidative stress and are deciphered by two complementary E3s. FBXO22 recognizes a degron constructed by the BACH1 BTB domain dimer interface, which is unmasked from transcriptional co-repressors after oxidative stress releases BACH1 from chromatin. When this degron is impaired by oxidation, a second BACH1 degron manifested by its destabilized BTB dimer is probed by a pair of FBXL17 proteins that remodels the substrate into E3-bound monomers for ubiquitination. Our findings highlight the multidimensionality of protein degradation signals and the functional complementarity of different ubiquitin ligases targeting the same substrate.

摘要

泛素依赖性蛋白水解以高底物特异性调节多种细胞功能,这取决于泛素E3连接酶解码靶标降解信号(即降解子)的能力。在此,我们表明,抗氧化反应基因的转录抑制因子BACH1在其二聚体BTB结构域的四级结构中具有两个不同的非常规降解子。这两个降解子均通过氧化应激实现功能化,并由两种互补的E3进行解码。FBXO22识别由BACH1 BTB结构域二聚体界面构建的降解子,氧化应激使BACH1从染色质释放后,该降解子从转录共抑制因子中暴露出来。当这个降解子因氧化而受损时,由不稳定的BTB二聚体表现出的第二个BACH1降解子会被一对FBXL17蛋白探测到,这对蛋白会将底物重塑为与E3结合的单体以进行泛素化。我们的研究结果突出了蛋白质降解信号的多维性以及靶向同一底物的不同泛素连接酶的功能互补性。

相似文献

1
Recognition of BACH1 quaternary structure degrons by two F-box proteins under oxidative stress.
Cell. 2024 Dec 26;187(26):7568-7584.e22. doi: 10.1016/j.cell.2024.10.012. Epub 2024 Nov 5.
2
Dual BACH1 regulation by complementary SCF-type E3 ligases.
Cell. 2024 Dec 26;187(26):7585-7602.e25. doi: 10.1016/j.cell.2024.11.006. Epub 2024 Dec 9.
5
Parallel SCF adaptor capture proteomics reveals a role for SCFFBXL17 in NRF2 activation via BACH1 repressor turnover.
Mol Cell. 2013 Oct 10;52(1):9-24. doi: 10.1016/j.molcel.2013.08.018. Epub 2013 Sep 12.
7
Ubiquitin E3 ligases in the plant Arg/N-degron pathway.
Biochem J. 2024 Dec 18;481(24):1949-1965. doi: 10.1042/BCJ20240132.
8
Systematic prediction of degrons and E3 ubiquitin ligase binding via deep learning.
BMC Biol. 2022 Jul 14;20(1):162. doi: 10.1186/s12915-022-01364-6.
9
Principles of paralog-specific targeted protein degradation engaging the C-degron E3 KLHDC2.
Nat Commun. 2024 Oct 12;15(1):8829. doi: 10.1038/s41467-024-52966-3.
10
Orphan quality control by an SCF ubiquitin ligase directed to pervasive C-degrons.
Nat Commun. 2023 Dec 15;14(1):8363. doi: 10.1038/s41467-023-44096-z.

引用本文的文献

1
Structural basis of NSD2 degradation via targeted recruitment of SCF-FBXO22.
bioRxiv. 2025 Aug 30:2025.08.29.673087. doi: 10.1101/2025.08.29.673087.
2
Development of Degraders and 2-pyridinecarboxyaldehyde (2-PCA) as a recruitment Ligand for FBXO22.
bioRxiv. 2025 Aug 20:2025.08.19.671158. doi: 10.1101/2025.08.19.671158.
5
Harnessing Antioxidants in Cancer Therapy: Opportunities, Challenges, and Future Directions.
Antioxidants (Basel). 2025 May 31;14(6):674. doi: 10.3390/antiox14060674.
7
Targeted protein degradation for cancer therapy.
Nat Rev Cancer. 2025 Apr 25. doi: 10.1038/s41568-025-00817-8.
8
10
Distinct Stress Regulators in the CRL Family: Emerging Roles of F-Box Proteins: Cullin-RING Ligases and Stress-Sensing.
Bioessays. 2025 May;47(5):e202400249. doi: 10.1002/bies.202400249. Epub 2025 Mar 16.

本文引用的文献

1
Cryo-EM structure of the KLHL22 E3 ligase bound to an oligomeric metabolic enzyme.
Structure. 2023 Nov 2;31(11):1431-1440.e5. doi: 10.1016/j.str.2023.09.002. Epub 2023 Oct 2.
2
Elucidation of E3 ubiquitin ligase specificity through proteome-wide internal degron mapping.
Mol Cell. 2023 Sep 21;83(18):3377-3392.e6. doi: 10.1016/j.molcel.2023.08.022.
3
The rise of degrader drugs.
Cell Chem Biol. 2023 Aug 17;30(8):864-878. doi: 10.1016/j.chembiol.2023.06.020. Epub 2023 Jul 25.
4
Systematic identification of anticancer drug targets reveals a nucleus-to-mitochondria ROS-sensing pathway.
Cell. 2023 May 25;186(11):2361-2379.e25. doi: 10.1016/j.cell.2023.04.026. Epub 2023 May 15.
5
BTB domains: A structural view of evolution, multimerization, and protein-protein interactions.
Bioessays. 2023 Feb;45(2):e2200179. doi: 10.1002/bies.202200179. Epub 2022 Nov 30.
7
ColabFold: making protein folding accessible to all.
Nat Methods. 2022 Jun;19(6):679-682. doi: 10.1038/s41592-022-01488-1. Epub 2022 May 30.
8
Defining molecular glues with a dual-nanobody cannabidiol sensor.
Nat Commun. 2022 Feb 10;13(1):815. doi: 10.1038/s41467-022-28507-1.
9
The transcription factor BACH1 at the crossroads of cancer biology: From epithelial-mesenchymal transition to ferroptosis.
J Biol Chem. 2021 Sep;297(3):101032. doi: 10.1016/j.jbc.2021.101032. Epub 2021 Jul 30.
10
Targeting oxidative stress in disease: promise and limitations of antioxidant therapy.
Nat Rev Drug Discov. 2021 Sep;20(9):689-709. doi: 10.1038/s41573-021-00233-1. Epub 2021 Jun 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验