Suppr超能文献

功能分析揭示了靶向治疗的免疫逃避表型。

Functional profiling of murine glioma models highlights targetable immune evasion phenotypes.

机构信息

Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada.

Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.

出版信息

Acta Neuropathol. 2024 Nov 27;148(1):74. doi: 10.1007/s00401-024-02831-w.

Abstract

Cancer-intrinsic immune evasion mechanisms and pleiotropy are a barrier to cancer immunotherapy. This is apparent in certain highly fatal cancers, including high-grade gliomas and glioblastomas (GBM). In this study, we evaluated two murine syngeneic glioma models (GL261 and CT2A) as preclinical models for human GBM using functional genetic screens, single-cell transcriptomics and machine learning approaches. Through CRISPR genome-wide co-culture killing screens with various immune cells (cytotoxic T cells, natural killer cells, and macrophages), we identified three key cancer-intrinsic evasion mechanisms: NFκB signaling, autophagy/endosome machinery, and chromatin remodeling. Additional fitness screens identified dependencies in murine gliomas that partially recapitulated those seen in human GBM (e.g., UFMylation). Our single-cell analyses showed that different glioma models exhibited distinct immune infiltration patterns and recapitulated key immune gene programs observed in human GBM, including hypoxia, interferon, and TNF signaling. Moreover, in vivo orthotopic tumor engraftment was associated with phenotypic shifts and changes in proliferative capacity, with murine tumors recapitulating the intratumoral heterogeneity observed in human GBM, exhibiting propensities for developmental- and mesenchymal-like phenotypes. Notably, we observed common transcription factors and cofactors shared with human GBM, including developmental (Nfia and Tcf4), mesenchymal (Prrx1 and Wwtr1), as well as cycling-associated genes (Bub3, Cenpa, Bard1, Brca1, and Mis18bp1). Perturbation of these genes led to reciprocal phenotypic shifts suggesting intrinsic feedback mechanisms that balance in vivo cellular states. Finally, we used a machine-learning approach to identify two distinct immune evasion gene programs, one of which represents a clinically-relevant phenotype and delineates a subpopulation of stem-like glioma cells that predict response to immune checkpoint inhibition in human patients. This comprehensive characterization helps bridge the gap between murine glioma models and human GBM, providing valuable insights for future therapeutic development.

摘要

肿瘤内在免疫逃逸机制和多效性是癌症免疫治疗的障碍。这在某些高致命性癌症中很明显,包括高级别神经胶质瘤和胶质母细胞瘤(GBM)。在这项研究中,我们使用功能遗传筛选、单细胞转录组学和机器学习方法,评估了两种鼠同源神经胶质瘤模型(GL261 和 CT2A)作为人类 GBM 的临床前模型。通过与各种免疫细胞(细胞毒性 T 细胞、自然杀伤细胞和巨噬细胞)进行 CRISPR 全基因组共培养杀伤筛选,我们确定了三种关键的肿瘤内在逃逸机制:NFκB 信号、自噬/内体机制和染色质重塑。额外的适应性筛选确定了在鼠神经胶质瘤中存在的依赖性,这些依赖性部分再现了在人类 GBM 中观察到的依赖性(例如,UFMylation)。我们的单细胞分析表明,不同的神经胶质瘤模型表现出不同的免疫浸润模式,并再现了在人类 GBM 中观察到的关键免疫基因程序,包括缺氧、干扰素和 TNF 信号。此外,体内原位肿瘤移植与表型转变和增殖能力的变化相关,鼠肿瘤再现了在人类 GBM 中观察到的肿瘤内异质性,表现出向发育型和间充质样表型的倾向性。值得注意的是,我们观察到与人类 GBM 共享的常见转录因子和辅助因子,包括发育(Nfia 和 Tcf4)、间充质(Prrx1 和 Wwtr1)以及与细胞周期相关的基因(Bub3、Cenpa、Bard1、Brca1 和 Mis18bp1)。这些基因的扰动导致了相互的表型转变,表明存在内在反馈机制来平衡体内细胞状态。最后,我们使用机器学习方法来识别两种不同的免疫逃逸基因程序,其中一种代表了一种临床相关的表型,并描绘了预测人类患者对免疫检查点抑制反应的亚群干细胞样神经胶质瘤细胞。这种全面的特征有助于弥合鼠神经胶质瘤模型和人类 GBM 之间的差距,为未来的治疗发展提供有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ce/11599368/a1bd216fcf7e/401_2024_2831_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验