Suppr超能文献

长期暴露于环境空气污染与苏格兰的住院负担:16年前瞻性人群队列研究

Long term exposure to ambient air pollution and hospital admission burden in Scotland: 16 year prospective population cohort study.

作者信息

Abed Al Ahad Mary, Demšar Urška, Sullivan Frank, Kulu Hill

机构信息

School of Geography and Sustainable Development, University of St Andrews, St Andrews, UK

School of Geography and Sustainable Development, University of St Andrews, St Andrews, UK.

出版信息

BMJ Open. 2024 Dec 18;14(12):e084032. doi: 10.1136/bmjopen-2024-084032.

Abstract

OBJECTIVES

Air pollution is considered a major threat for global health and is associated with various health outcomes. Previous research on long term exposure to ambient air pollution and health placed more emphasis on mortality rather than hospital admission outcomes and was characterised by heterogeneities in the size of effect estimates between studies, with less focus on mental/behavioural or infectious diseases outcomes. In this study, we investigated the association between long term exposure to ambient air pollution and all cause and cause specific hospital admissions.

DESIGN

This was a prospective cohort study.

SETTING

Individual level data from the Scottish Longitudinal Study (SLS) were linked to yearly concentrations of four pollutants (nitrogen dioxide (NO), sulphur dioxide (SO), particulate matter diameter ≤10 µm (PM) and particulate matter diameter ≤2.5 µm (PM)) at 1 km spatial resolution using the individual's residential postcode for each year between 2002 and 2017.

PARTICIPANTS

The study included 202 237 adult individuals aged ≥17 years.

OUTCOME MEASURES

The associations between air pollution and all cause, cardiovascular, respiratory, infectious, mental/behavioural disorders and other cause hospital admissions were examined using multi-level, mixed effects, negative binomial regression.

RESULTS

Higher exposure to NO, PM and PM was associated with a higher incidence of all cause, cardiovascular, respiratory and infectious hospital admissions before adjusting for the area of residence, and in fully adjusted models when considering cumulative exposure across time. In fully adjusted models, the incidence rate for respiratory hospital admissions increased by 4.2% (95% CI 2.1% to 6.3%) and 1.2% (95% CI 0.8% to 1.7%) per 1 µg/m increase in PM and NO pollutants, respectively. SO was mainly associated with respiratory hospital admissions (incidence rate ratio (IRR)=1.016; 95% CI 1.004 to 1.027) and NO was related to a higher incidence of hospital admissions for mental/behavioural disorders (IRR=1.021; 95% CI 1.011 to 1.031). Average cumulative exposure to air pollution showed stronger positive associations with higher rates of hospital admissions.

CONCLUSIONS

The results of this study support an association between long term (16 years) exposure to ambient air pollution and increased all cause and cause specific hospital admissions for both physical and mental/behavioural illnesses. The results suggest that interventions on air pollution through stricter environmental regulations could help ease the hospital care burden in Scotland in the long term.

摘要

目标

空气污染被视为对全球健康的重大威胁,并与多种健康结果相关。先前关于长期暴露于环境空气污染与健康的研究更侧重于死亡率而非住院结局,且研究之间效应估计大小存在异质性,较少关注精神/行为或传染病结局。在本研究中,我们调查了长期暴露于环境空气污染与全因及特定病因住院之间的关联。

设计

这是一项前瞻性队列研究。

设置

利用个体的居住邮政编码,将苏格兰纵向研究(SLS)的个体水平数据与2002年至2017年期间每年4种污染物(二氧化氮(NO)、二氧化硫(SO)、直径≤10微米的颗粒物(PM)和直径≤2.5微米的颗粒物(PM))在1公里空间分辨率下的浓度相链接。

参与者

该研究纳入了202237名年龄≥17岁的成年个体。

结局指标

使用多水平、混合效应、负二项回归分析空气污染与全因、心血管、呼吸、感染、精神/行为障碍及其他病因住院之间的关联。

结果

在调整居住区域之前,以及在考虑跨时间累积暴露的完全调整模型中,更高水平的NO、PM和PM暴露与全因、心血管、呼吸和感染性住院的更高发病率相关。在完全调整模型中,每增加1微克/立方米的PM和NO污染物,呼吸性住院的发病率分别增加4.2%(95%CI 2.1%至6.3%)和1.2%(95%CI 0.8%至1.7%)。SO主要与呼吸性住院相关(发病率比(IRR)=1.016;95%CI 1.004至1.027),NO与精神/行为障碍住院的更高发病率相关(IRR=1.021;95%CI 1.011至1.031)。空气污染的平均累积暴露与更高的住院率呈现更强的正相关。

结论

本研究结果支持长期(16年)暴露于环境空气污染与全因以及身体和精神/行为疾病特定病因住院增加之间存在关联。结果表明,通过更严格的环境法规对空气污染进行干预,从长期来看有助于减轻苏格兰的医院护理负担。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7195/11660336/0cb6d431ff8c/bmjopen-14-12-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验