Suppr超能文献

用于癌症免疫治疗的基于肽的肿瘤激活检查点抑制剂的开发。

Development of a peptide-based tumor-activated checkpoint inhibitor for cancer immunotherapy.

作者信息

Zhao Zhen, Fetse John, Mamani Umar-Farouk, Guo Yuhan, Li Yuanke, Patel Pratikkumar, Liu Yanli, Lin Chien-Yu, Li Yongren, Mustafa Bahaa, Cheng Kun

机构信息

Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA.

Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA.

出版信息

Acta Biomater. 2025 Jan 24;193:484-497. doi: 10.1016/j.actbio.2024.12.051. Epub 2024 Dec 22.

Abstract

Antibody-based checkpoint inhibitors have achieved great success in cancer immunotherapy, but their uncontrollable immune-related adverse events remain a major challenge. In this study, we developed a tumor-activated nanoparticle that is specifically active in tumors but not in normal tissues. We discovered a short anti-PD-L1 peptide that blocks the PD-1/PD-L1 interaction. The peptide was modified with a PEG chain through a novel matrix metalloproteinase-2 (MMP-2)-specific cleavage linker. The modified TR3 peptide self-assembles into a micelle-like nanoparticle (TR3-M-NP), which remains inactive and unable to block the PD-1/PD-L1 interaction in its native form. However, upon cleavage by MMP-2 in tumors, it releases the active peptide. The TR3-M-NP nanoparticle was specifically activated in tumors through enzyme-mediated cleavage, leading to the inhibition of tumor growth and extended survival compared to control groups. In summary, TR3-M-NP shows great potential as a tumor-responsive immunotherapy agent with reduced toxicities. STATEMENT OF SIGNIFICANCE: In this study, we developed a bioactive peptide-based checkpoint inhibitor that is active only in tumors and not in normal tissues, thereby potentially avoiding immune-related adverse effects. We discovered a short anti-PD-L1 peptide, TR3, that blocks the PD-1/PD-L1 interaction. We chemically modified the TR3 peptide to self-assemble into a micelle-like nanoparticle (TR3-M-NP), which itself cannot block the PD-1/PD-L1 interaction but releases the active TR3 peptide in tumors upon cleavage by MMP-2. In contrast, the nanoparticle is randomly degraded in normal tissues into peptides fragments that cannot block the PD-1/PD-L1 interaction. Upon intraperitoneal injection, TR3-M-NP was activated specifically in tumors through enzyme cleavage, leading to the inhibition of tumor growth and extended survival compared to the control groups. In summary, TR3-M-NP holds significant promise as a tumor-responsive immunotherapy agent with reduced toxicities. The bioactive platform has the potential to be used for other types of checkpoint inhibitor.

摘要

基于抗体的检查点抑制剂在癌症免疫治疗中取得了巨大成功,但其不可控的免疫相关不良事件仍然是一个重大挑战。在本研究中,我们开发了一种肿瘤激活纳米颗粒,其在肿瘤中具有特异性活性,但在正常组织中无活性。我们发现了一种短的抗PD-L1肽,它能阻断PD-1/PD-L1相互作用。该肽通过一种新型基质金属蛋白酶-2(MMP-2)特异性切割连接子用聚乙二醇链进行修饰。修饰后的TR3肽自组装成胶束样纳米颗粒(TR3-M-NP),其在天然形式下无活性且无法阻断PD-1/PD-L1相互作用。然而,在肿瘤中被MMP-2切割后,它会释放出活性肽。TR3-M-NP纳米颗粒通过酶介导的切割在肿瘤中被特异性激活,与对照组相比,导致肿瘤生长受到抑制且生存期延长。总之,TR3-M-NP作为一种毒性降低的肿瘤反应性免疫治疗药物具有巨大潜力。重要性声明:在本研究中,我们开发了一种基于生物活性肽的检查点抑制剂,其仅在肿瘤中具有活性,而在正常组织中无活性,从而有可能避免免疫相关不良反应。我们发现了一种短的抗PD-L1肽TR3,它能阻断PD-1/PD-L1相互作用。我们对TR3肽进行化学修饰,使其自组装成胶束样纳米颗粒(TR3-M-NP),其本身无法阻断PD-1/PD-L1相互作用,但在被MMP-2切割后在肿瘤中释放出活性TR3肽。相比之下,该纳米颗粒在正常组织中随机降解为无法阻断PD-1/PD-L1相互作用的肽片段。腹腔注射后,TR3-M-NP通过酶切割在肿瘤中被特异性激活,与对照组相比,导致肿瘤生长受到抑制且生存期延长。总之,TR3-M-NP作为一种毒性降低的肿瘤反应性免疫治疗药物具有重大前景。该生物活性平台有潜力用于其他类型的检查点抑制剂。

相似文献

1
Development of a peptide-based tumor-activated checkpoint inhibitor for cancer immunotherapy.
Acta Biomater. 2025 Jan 24;193:484-497. doi: 10.1016/j.actbio.2024.12.051. Epub 2024 Dec 22.
2
Oncolytic reovirus enhances the effect of CEA immunotherapy when combined with PD1-PDL1 inhibitor in a colorectal cancer model.
Immunotherapy. 2025 Apr;17(6):425-435. doi: 10.1080/1750743X.2025.2501926. Epub 2025 May 12.
3
Interplay between tumor mutation burden and the tumor microenvironment predicts the prognosis of pan-cancer anti-PD-1/PD-L1 therapy.
Front Immunol. 2025 Jul 24;16:1557461. doi: 10.3389/fimmu.2025.1557461. eCollection 2025.
5
INHBA promotes tumor growth and induces resistance to PD-L1 blockade by suppressing IFN-γ signaling.
Acta Pharmacol Sin. 2025 Feb;46(2):448-461. doi: 10.1038/s41401-024-01381-x. Epub 2024 Sep 2.
6
Epithelial Expressed B7-H4 Drives Differential Immunotherapy Response in Murine and Human Breast Cancer.
Cancer Res Commun. 2024 Apr 24;4(4):1120-1134. doi: 10.1158/2767-9764.CRC-23-0468.
7
Targeting USP47 enhances immunotherapy in hepatocellular carcinoma by destabilizing PD-L1.
Int Immunopharmacol. 2025 Aug 28;161:115024. doi: 10.1016/j.intimp.2025.115024. Epub 2025 Jun 9.
9
Exploring Multivalency in the Development of Anti-PD-L1 Peptides for Cancer Immunotherapy.
Pharm Res. 2024 Dec;41(12):2275-2288. doi: 10.1007/s11095-024-03803-1. Epub 2024 Dec 17.
10
Systemic treatments for metastatic cutaneous melanoma.
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.

引用本文的文献

1
Application of Immune Checkpoint Inhibitors in Cancer.
MedComm (2020). 2025 Aug 10;6(8):e70176. doi: 10.1002/mco2.70176. eCollection 2025 Aug.
2
Innovative Peptide Therapeutics in the Pipeline: Transforming Cancer Detection and Treatment.
Int J Mol Sci. 2025 Jul 16;26(14):6815. doi: 10.3390/ijms26146815.

本文引用的文献

1
Accurate structure prediction of biomolecular interactions with AlphaFold 3.
Nature. 2024 Jun;630(8016):493-500. doi: 10.1038/s41586-024-07487-w. Epub 2024 May 8.
2
Recent advances in the development of therapeutic peptides.
Trends Pharmacol Sci. 2023 Jul;44(7):425-441. doi: 10.1016/j.tips.2023.04.003. Epub 2023 May 27.
3
2022 FDA TIDES (Peptides and Oligonucleotides) Harvest.
Pharmaceuticals (Basel). 2023 Feb 22;16(3):336. doi: 10.3390/ph16030336.
4
Stealth nanoparticles in oncology: Facing the PEG dilemma.
J Control Release. 2022 Nov;351:22-36. doi: 10.1016/j.jconrel.2022.09.002. Epub 2022 Sep 19.
5
Discovery of Cyclic Peptide Inhibitors Targeting PD-L1 for Cancer Immunotherapy.
J Med Chem. 2022 Sep 22;65(18):12002-12013. doi: 10.1021/acs.jmedchem.2c00539. Epub 2022 Sep 6.
6
Localized delivery of immunotherapy via implantable scaffolds for breast cancer treatment.
J Control Release. 2022 Jan;341:399-413. doi: 10.1016/j.jconrel.2021.11.043. Epub 2021 Dec 1.
7
Novel Peptide Therapeutic Approaches for Cancer Treatment.
Cells. 2021 Oct 27;10(11):2908. doi: 10.3390/cells10112908.
8
Targeted Delivery of an siRNA/PNA Hybrid Nanocomplex Reverses Carbon Tetrachloride-Induced Liver Fibrosis.
Adv Ther (Weinh). 2019 Aug;2(8). doi: 10.1002/adtp.201900046. Epub 2019 Jun 20.
9
10
Novel combination immunotherapy for pancreatic cancer: potent anti-tumor effects with CD40 agonist and interleukin-15 treatment.
Clin Transl Immunology. 2020 Aug 15;9(8):e1165. doi: 10.1002/cti2.1165. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验