Suppr超能文献

用于预测乳腺癌肝转移患者总生存期和癌症特异性生存期的网络动态列线图:基于监测、流行病学和最终结果(SEER)数据库的分析

A network dynamic nomogram for predicting overall survival and cancer-specific survival in patients with breast cancer liver metastases: an analysis based on the SEER database.

作者信息

Tian Mengxiang, Wang Kangtao, Li Ming

机构信息

Department of Immunology, College of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, People's Republic of China.

Department of General Surgery, The Xiangya Hospital, Central South University, Changsha, 410008, China.

出版信息

Discov Oncol. 2024 Dec 29;15(1):845. doi: 10.1007/s12672-024-01719-1.

Abstract

The liver stands out as one of the most frequent sites for distant metastasis in breast cancer cases. However, effective risk stratification tools for patients with breast cancer liver metastases (BCLM) are still lacking. We identified BCLM patients from the SEER database spanning from 2010 to 2016. After meticulously filtering out cases with incomplete data, a total of 3179 patients were enrolled and randomly divided into training and validation cohorts at a ratio of 2:1. Leveraging comprehensive patient data, we constructed a nomogram through rigorous evaluation of a Cox regression model. Validation of the nomogram was conducted using a range of statistical measures, including the concordance index (C-index), calibration curves, time-dependent receiver operating characteristic curves, and decision curve analysis (DCA). Both univariable and multivariable analyses revealed significant associations between OS and CSS in BCLM patients and 14 variables, including age, race, and tumor stage, among others. Utilizing these pertinent variables, we formulated nomograms for OS and CSS prediction. Subsequent validation involved rigorous assessment using time-dependent ROC curves, decision curve analysis, C-index evaluations, and calibration curves. Our web-based dynamic nomogram represents a valuable tool for efficiently analyzing the clinical profiles of BCLM patients, thereby aiding in informed clinical decision-making processes.

摘要

肝脏是乳腺癌远处转移最常见的部位之一。然而,针对乳腺癌肝转移(BCLM)患者的有效风险分层工具仍然缺乏。我们从2010年至2016年的SEER数据库中识别出BCLM患者。在仔细筛选出数据不完整的病例后,共纳入3179例患者,并以2:1的比例随机分为训练队列和验证队列。利用全面的患者数据,我们通过对Cox回归模型的严格评估构建了一个列线图。使用一系列统计方法对列线图进行验证,包括一致性指数(C指数)、校准曲线、时间依赖性受试者操作特征曲线和决策曲线分析(DCA)。单变量和多变量分析均显示,BCLM患者的总生存期(OS)和无进展生存期(CSS)与14个变量之间存在显著关联,包括年龄、种族和肿瘤分期等。利用这些相关变量,我们制定了用于预测OS和CSS的列线图。随后的验证包括使用时间依赖性ROC曲线、决策曲线分析、C指数评估和校准曲线进行严格评估。我们基于网络的动态列线图是一种有价值的工具,可有效分析BCLM患者的临床特征,从而有助于临床决策过程中的明智决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2455/11683041/47ecdf7daa7c/12672_2024_1719_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验