Suppr超能文献

在10.5特斯拉磁场下探索人类大脑的体内代谢:磁共振波谱成像的初步见解

Exploring in vivo human brain metabolism at 10.5 T: Initial insights from MR spectroscopic imaging.

作者信息

Hingerl Lukas, Strasser Bernhard, Schmidt Simon, Eckstein Korbinian, Genovese Guglielmo, Auerbach Edward J, Grant Andrea, Waks Matt, Wright Andrew, Lazen Philipp, Sadeghi-Tarakameh Alireza, Hangel Gilbert, Niess Fabian, Eryaman Yigitcan, Adriany Gregor, Metzger Gregory, Bogner Wolfgang, Marjańska Małgorzata

机构信息

High-field MR Center HFMR, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.

Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA.

出版信息

Neuroimage. 2025 Feb 15;307:121015. doi: 10.1016/j.neuroimage.2025.121015. Epub 2025 Jan 9.

Abstract

INTRODUCTION

Ultra-high-field magnetic resonance (MR) systems (7 T and 9.4 T) offer the ability to probe human brain metabolism with enhanced precision. Here, we present the preliminary findings from 3D MR spectroscopic imaging (MRSI) of the human brain conducted with the world's first 10.5 T whole-body MR system.

METHODS

Employing a custom-built 16-channel transmit and 80-channel receive MR coil at 10.5 T, we conducted MRSI acquisitions in six healthy volunteers to map metabolic compounds in the human cerebrum in vivo. Three MRSI protocols with different matrix sizes and scan times (4.4 × 4.4 × 4.4 mm³: 10 min, 3.4 × 3.4 × 3.4 mm³: 15 min, and 2.75×2.75×2.75 mm³: 25 min) were tested. Concentric ring trajectories were utilized for time-efficient encoding of a spherical 3D k-space with ∼4 kHz spectral bandwidth. B/B shimming was performed based on respective field mapping sequences and anatomical T-weighted MRI were obtained.

RESULTS

By combining the benefits of an ultra-high-field system with the advantages of free-induction-decay (FID-)MRSI, we present the first metabolic maps acquired at 10.5 T in the healthy human brain at both high (voxel size of 4.4³ mm³) and ultra-high (voxel size of 2.75³ mm³) isotropic spatial resolutions. Maps of 13 metabolic compounds (aspartate, choline compounds and creatine + phosphocreatine, γ-aminobutyric acid (GABA), glucose, glutamine, glutamate, glutathione, myo-inositol, scyllo-inositol, N-acetylaspartate (NAA), N-acetylaspartylglutamate (NAAG), taurine) and macromolecules were obtained individually. The spectral quality was outstanding in the parietal and occipital lobes, but lower in other brain regions such as the temporal and frontal lobes. The average total NAA (tNAA = NAA + NAAG) signal-to-noise ratio over the whole volume of interest was 12.1± 8.9 and the full width at half maximum of tNAA was 24.7± 9.6 Hz for the 2.75 × 2.75 × 2.75 mm³ resolution. The need for an increased spectral bandwidth in combination with spatio-spectral encoding imposed significant challenges on the gradient system, but the FID approach proved very robust to field inhomogeneities of ∆B = 45 ± 38 Hz (frequency offset ± spatial STD) and B = 65 ± 11° within the MRSI volume of interest.

DISCUSSION

These preliminary findings highlight the potential of 10.5 T MRSI as a powerful imaging tool for probing cerebral metabolism. By providing unprecedented spatial and spectral resolution, this technology could offer a unique view into the metabolic intricacies of the human brain, but further technical developments will be necessary to optimize data quality and fully leverage the capabilities of 10.5 T MRSI.

摘要

引言

超高场磁共振(MR)系统(7T和9.4T)能够更精确地探测人类大脑代谢。在此,我们展示了使用世界上第一台10.5T全身MR系统对人类大脑进行三维磁共振波谱成像(MRSI)的初步结果。

方法

我们使用定制的16通道发射和80通道接收的MR线圈,在10.5T的磁场强度下,对6名健康志愿者进行MRSI采集,以在体内绘制人类大脑中的代谢化合物分布图。测试了三种具有不同矩阵大小和扫描时间的MRSI协议(4.4×4.4×4.4mm³:10分钟,3.4×3.4×3.4mm³:15分钟,2.75×2.75×2.75mm³:25分钟)。采用同心环轨迹对具有约4kHz光谱带宽的球形三维k空间进行高效时间编码。基于各自的场图序列进行B/B匀场,并获得解剖学T加权MRI。

结果

通过结合超高场系统的优势和自由感应衰减(FID)-MRSI的优点,我们展示了在健康人类大脑中以高(体素大小为4.4³mm³)和超高(体素大小为2.75³mm³)各向同性空间分辨率在10.5T下获得的首张代谢图谱。分别获得了13种代谢化合物(天冬氨酸、胆碱化合物、肌酸+磷酸肌酸、γ-氨基丁酸(GABA)、葡萄糖、谷氨酰胺、谷氨酸、谷胱甘肽、肌醇、异肌醇、N-乙酰天门冬氨酸(NAA)、N-乙酰天门冬氨酰谷氨酸(NAAG)、牛磺酸)和大分子的图谱。顶叶和枕叶的光谱质量出色,但颞叶和额叶等其他脑区的光谱质量较低。对于2.75×2.75×2.75mm³分辨率,感兴趣的整个体积上的平均总NAA(tNAA = NAA + NAAG)信噪比为12.1±8.9,tNAA的半高宽为24.7±9.6Hz。增加光谱带宽与空间光谱编码相结合对梯度系统提出了重大挑战,但FID方法被证明对感兴趣的MRSI体积内∆B = 45±38Hz(频率偏移±空间标准差)和B = 65±11°的场不均匀性非常稳健。

讨论

这些初步结果突出了10.5T MRSI作为探测脑代谢的强大成像工具的潜力。通过提供前所未有的空间和光谱分辨率,该技术可以提供对人类大脑代谢复杂性的独特见解,但需要进一步的技术发展来优化数据质量并充分利用10.5T MRSI的能力。

相似文献

1
Exploring in vivo human brain metabolism at 10.5 T: Initial insights from MR spectroscopic imaging.
Neuroimage. 2025 Feb 15;307:121015. doi: 10.1016/j.neuroimage.2025.121015. Epub 2025 Jan 9.
2
Clinical High-Resolution 3D-MR Spectroscopic Imaging of the Human Brain at 7 T.
Invest Radiol. 2020 Apr;55(4):239-248. doi: 10.1097/RLI.0000000000000626.
4
Inter-subject stability and regional concentration estimates of 3D-FID-MRSI in the human brain at 7 T.
NMR Biomed. 2021 Dec;34(12):e4596. doi: 10.1002/nbm.4596. Epub 2021 Aug 11.
6
Whole-slice mapping of GABA and GABA at 7T via adiabatic MEGA-editing, real-time instability correction, and concentric circle readout.
Neuroimage. 2019 Jan 1;184:475-489. doi: 10.1016/j.neuroimage.2018.09.039. Epub 2018 Sep 19.
10
High-quality lipid suppression and B0 shimming for human brain H MRSI.
Neuroimage. 2024 Oct 15;300:120845. doi: 10.1016/j.neuroimage.2024.120845. Epub 2024 Sep 12.

引用本文的文献

1
From a Voxel to Maps: A Comparative Study of sLASER SVS and 3D-CRT-FID-MRSI at 3 T and 7 T.
medRxiv. 2025 Sep 3:2025.08.27.25334335. doi: 10.1101/2025.08.27.25334335.
2
Aspartate in the Brain: A Review.
Neurochem Res. 2025 Jun 12;50(3):199. doi: 10.1007/s11064-025-04454-3.

本文引用的文献

1
ECCENTRIC: A fast and unrestrained approach for high-resolution in vivo metabolic imaging at ultra-high field MR.
Imaging Neurosci (Camb). 2024 Oct 14;2:1-20. doi: 10.1162/imag_a_00313. eCollection 2024 Oct 1.
2
Proton-free induction decay MRSI at 7 T in the human brain using an egg-shaped modified rosette K-space trajectory.
Magn Reson Med. 2025 Apr;93(4):1443-1457. doi: 10.1002/mrm.30368. Epub 2024 Nov 20.
3
RF coil design strategies for improving SNR at the ultrahigh magnetic field of 10.5T.
Magn Reson Med. 2025 Feb;93(2):873-888. doi: 10.1002/mrm.30315. Epub 2024 Oct 16.
4
Universal modes: Calibration-free time-interleaved acquisition of modes.
Magn Reson Med. 2024 Jul;92(1):43-56. doi: 10.1002/mrm.30032. Epub 2024 Feb 1.
5
The possible influence of third-order shim coils on gradient-magnet interactions: an inter-field and inter-site study.
MAGMA. 2024 Apr;37(2):169-183. doi: 10.1007/s10334-023-01138-3. Epub 2024 Jan 10.
6
Magnetic resonance imaging at 9.4 T: the Maastricht journey.
MAGMA. 2023 Apr;36(2):159-173. doi: 10.1007/s10334-023-01080-4. Epub 2023 Apr 20.
7
A vision of 14 T MR for fundamental and clinical science.
MAGMA. 2023 Apr;36(2):211-225. doi: 10.1007/s10334-023-01081-3. Epub 2023 Apr 10.
8
Germany's journey toward 14 Tesla human magnetic resonance.
MAGMA. 2023 Apr;36(2):191-210. doi: 10.1007/s10334-023-01085-z. Epub 2023 Apr 8.
10
Ultra-high field MRI: parallel-transmit arrays and RF pulse design.
Phys Med Biol. 2023 Jan 18;68(2). doi: 10.1088/1361-6560/aca4b7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验