Guida Carolina, Findling Nathaniel, Magnin Valérie, Favre Boivin Fabienne, Charlet Laurent
ISTerre, University Grenoble Alpes, University Savoie Mont Blanc, CNRS, IRD, University Gustave Eiffel, 38058 Grenoble, France.
Institute des Technologies de l'Environnement Construit, University of Applied Sciences and Arts Western Switzerland, 1700 Fribourg, Switzerland.
Nanomaterials (Basel). 2025 Jan 14;15(2):115. doi: 10.3390/nano15020115.
In this study, the removal of benzotriazole (BTA), a pervasive aquatic contaminant widely used for its anti-corrosion, UV-stabilizing, and antioxidant properties, by nanomagnetite, biochar, and nanomagnetite-biochar composite is investigated. Nanomagnetite and nanomagnetite-biochar composite were synthesized under anoxic conditions and tested for BTA removal efficiency at neutral pH under both oxic and anoxic conditions at different time scales. Within the short time scale (up to 8 h), the removal of BTA by nanomagnetite-biochar composite was shown to be due to BTA deprotonation by the nanomagnetite surface. Through proton liberation, Fe²⁺ is released in accordance with the reaction Fe₃O₄ + 2H⁺ → Fe₂O₃ + Fe²⁺ + H₂O, which likely influences BTA complexation and its possible redox degradation. On the longer time scale, biochar achieved higher removal efficiency: 50% BTA removed within 48 h, due to formation of a ternary complex with surface Ca ions, or 75% BTA removed after HCl biochar acid wash followed by Ca surface saturation. As BTA presents significant environmental risks due to its extensive industrial applications, the present study offers critical insights into the mechanisms of BTA removal by nanomagnetite-biochar composite, and highlights the potential of such materials for water treatment applications.
在本研究中,对纳米磁铁矿、生物炭以及纳米磁铁矿-生物炭复合材料去除苯并三唑(BTA)的情况进行了研究。BTA是一种广泛存在的水生污染物,因其具有防腐、紫外线稳定和抗氧化特性而被广泛使用。纳米磁铁矿和纳米磁铁矿-生物炭复合材料在缺氧条件下合成,并在不同时间尺度下,于有氧和缺氧条件的中性pH值下测试其对BTA的去除效率。在短时间尺度(长达8小时)内,纳米磁铁矿-生物炭复合材料对BTA的去除被证明是由于纳米磁铁矿表面使BTA去质子化。通过质子释放,根据反应Fe₃O₄ + 2H⁺ → Fe₂O₃ + Fe²⁺ + H₂O释放出Fe²⁺,这可能会影响BTA的络合及其可能的氧化还原降解。在较长时间尺度上,生物炭实现了更高的去除效率:在48小时内去除了50%的BTA,这是由于与表面Ca离子形成了三元络合物,或者在HCl生物炭酸洗并随后进行Ca表面饱和处理后,去除了75%的BTA。由于BTA因其广泛的工业应用而存在重大环境风险,本研究为纳米磁铁矿-生物炭复合材料去除BTA的机制提供了关键见解,并突出了此类材料在水处理应用中的潜力。