Lovett Derryn, Woodcock Thomas, Naude Jacques, Redhead Julian, Majeed Azeem, Aylin Paul
Department of Primary Care and Public Health, Imperial College London, London, UK
Chelsea & Westminster Hospital NHS Foundation Trust, London, UK.
BMJ Health Care Inform. 2025 Feb 5;32(1):e101055. doi: 10.1136/bmjhci-2024-101055.
This study evaluates the feasibility and accuracy of a pragmatic approach to predicting hospital bed occupancy for COVID-19-positive patients, using only simple methods accessible to typical health system teams.
We used an observational forecasting design for the study period 1st June 2021 to -21st January 2022. Evaluation data covered individuals registered with a general practitioner in North West London, through the Whole Systems Integrated Care deidentified dataset. We extracted data on COVID-19-positive tests, vaccination records and admissions to hospitals with confirmed COVID-19 within the study period. We used linear regression models to predict bed occupancy, using lagged, smoothed numbers of COVID-19 cases among unvaccinated individuals in the community as the predictor. We used mean absolute percentage error (MAPE) to assess model accuracy.
Model accuracy varied throughout the study period, with a MAPE of 10.8% from 12 July 2021 to 18 October 2021, rising to 20.0% over the subsequent period to 15 December 2021. After that, model accuracy deteriorated considerably, with MAPE 110.4% from December 2021 to 21 January 2022. Model outputs were used by senior healthcare system leaders to aid the planning, organisation and provision of healthcare services to meet demand for hospital beds.
The model produced useful predictions of COVID-19-positive bed occupancy prior to the emergence of the Omicron variant, but accuracy deteriorated after this. In practice, the model offers a pragmatic approach to predicting bed occupancy within a pandemic wave. However, this approach requires continual monitoring of errors to ensure that the periods of poor performance are identified quickly.
本研究评估一种实用方法预测新冠病毒检测呈阳性患者住院床位占用情况的可行性和准确性,该方法仅使用典型卫生系统团队可获取的简单方法。
我们在2021年6月1日至2022年1月21日的研究期间采用了观察性预测设计。评估数据涵盖通过全系统综合护理去识别数据集在伦敦西北部向全科医生登记的个体。我们提取了研究期间新冠病毒检测呈阳性的检测数据、疫苗接种记录以及确诊感染新冠病毒后住院的数据。我们使用线性回归模型预测床位占用情况,将社区中未接种疫苗个体的新冠病例滞后、平滑后的数量作为预测指标。我们使用平均绝对百分比误差(MAPE)来评估模型准确性。
在整个研究期间,模型准确性有所不同,2021年7月12日至2021年10月18日期间的MAPE为10.8%,在随后至2021年12月15日期间上升至20.0%。此后,模型准确性大幅下降,2021年12月至2022年1月21日期间的MAPE为110.4%。高级卫生系统领导者使用模型输出结果来协助规划、组织和提供医疗服务,以满足医院床位需求。
该模型在奥密克戎变异株出现之前对新冠病毒检测呈阳性患者的床位占用情况做出了有用的预测,但此后准确性下降。在实际应用中,该模型为预测疫情高峰期间的床位占用情况提供了一种实用方法。然而,这种方法需要持续监测误差,以确保迅速识别性能不佳的时期。