Suppr超能文献

一种5-长链非编码RNA特征可预测临床预后,并在成人软组织肉瘤中表现出不同的mRNA表达。

A 5-lncRNA signature predicts clinical prognosis and demonstrates a different mRNA expression in adult soft tissue sarcoma.

作者信息

Yao Ye, Wang Xiaojuan, Zhao Ziwei, Li Zhipeng

机构信息

School of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China.

Department of Nephrology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China.

出版信息

Transl Cancer Res. 2025 Jan 31;14(1):179-196. doi: 10.21037/tcr-24-203. Epub 2025 Jan 23.

Abstract

BACKGROUND

Adult soft tissue sarcoma (SARC) is a highly aggressive malignancy. A growing number of long non-coding RNAs (lncRNAs) have been linked to malignancies, and many researchers consider lncRNAs potential biomarkers for prognosis. However, there is limited evidence available to determine the role of lncRNAs in the prognosis of SARC. In this study, we collected The Cancer Genome Atlas (TCGA) data to identify prognosis-related lncRNAs for SARC and explore the relationship between lncRNAs and gene expression.

METHODS

TCGA datasets, which included 259 samples, served as data sources in this study. Univariable Cox regression analysis, robust analysis, and multivariable Cox regression analysis were used to construct a 5-lncRNA signature Cox regression model. Then, based on the median risk score, high- and low-risk groups were identified. The Kaplan-Meier method was applied to survival analysis in the training set, testing set, complete set, and different pathological type sets. To explore the relationship between lncRNAs and messenger RNAs (mRNAs), differentially expressed mRNAs (DEmRNAs) between the high- and low-risk groups were identified. The function of DEmRNAs was predicted using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The relationships between the 5 lncRNAs and DEmRNAs were calculated using the Spearman correlation coefficient. A total of 18 DEmRNAs that showed a strong correlation with risk score (|Spearman's r|>0.6) in leiomyosarcoma (LMS) samples were identified, and a protein-protein interaction (PPI) network was built using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database.

RESULTS

A Cox regression model was built in this study with the risk score= (-0.5698*) + 0.1732* + 0.387* + 0.6262* + 0.9781*. The study found that this 5-lncRNA signature could predict prognosis well, especially in LMS, a subtype of SARC, with P value =1.19e-06 [hazard ratio (HR) 6.134, 95% confidence interval (CI): 2.951-12.752]. Additionally, 44 DEmRNAs were observed between the high- and low-risk groups, and the expression levels of DEmRNAs in LMS samples differed from other pathology types. The PPI network analysis revealed that , , and were the most important hub genes among the 18 DEmRNAs, all of which are essential for muscle function.

CONCLUSIONS

In this study, a predictive clinical model for SARC was successfully established, showing better prediction accuracy in patients with LMS. Importantly, we identified , , and as potential therapeutic targets for SARC.

摘要

背景

成人软组织肉瘤(SARC)是一种侵袭性很强的恶性肿瘤。越来越多的长链非编码RNA(lncRNA)与恶性肿瘤相关,许多研究人员认为lncRNA是潜在的预后生物标志物。然而,关于lncRNA在SARC预后中的作用,现有证据有限。在本研究中,我们收集了癌症基因组图谱(TCGA)数据,以识别与SARC预后相关的lncRNA,并探讨lncRNA与基因表达之间的关系。

方法

本研究以包含259个样本的TCGA数据集作为数据源。采用单变量Cox回归分析、稳健分析和多变量Cox回归分析构建一个包含5个lncRNA的特征Cox回归模型。然后,根据中位风险评分确定高风险组和低风险组。将Kaplan-Meier方法应用于训练集、测试集、完整集和不同病理类型集的生存分析。为了探讨lncRNA与信使RNA(mRNA)之间的关系,识别高风险组和低风险组之间差异表达的mRNA(DEmRNA)。使用基因本体论(GO)和京都基因与基因组百科全书(KEGG)富集分析预测DEmRNA的功能。使用Spearman相关系数计算5个lncRNA与DEmRNA之间的关系。在平滑肌肉瘤(LMS)样本中,共鉴定出18个与风险评分呈强相关(|Spearman's r|>0.6)的DEmRNA,并使用搜索相互作用基因/蛋白质的工具(STRING)数据库构建蛋白质-蛋白质相互作用(PPI)网络。

结果

本研究构建了一个风险评分为(-0.5698*)+0.1732*+0.387*+0.6262*+0.9781*的Cox回归模型。研究发现,这种包含5个lncRNA的特征能够很好地预测预后,尤其是在SARC的一种亚型LMS中,P值=1.19e-06[危险比(HR)6.134,95%置信区间(CI):2.951-12.752]。此外,在高风险组和低风险组之间观察到44个DEmRNA,LMS样本中DEmRNA的表达水平与其他病理类型不同。PPI网络分析显示,在18个DEmRNA中, 、 和 是最重要的枢纽基因,所有这些基因对肌肉功能都至关重要。

结论

在本研究中,成功建立了SARC的预测临床模型,在LMS患者中显示出更好的预测准确性。重要的是,我们将 、 和 确定为SARC的潜在治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7943/11833409/9f9a6636c5aa/tcr-14-01-179-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验