Suppr超能文献

用于模拟人工视觉中低分辨率光幻视面部图像的人类心理物理测试的机器学习技术

Machine Learning Techniques for Simulating Human Psychophysical Testing of Low-Resolution Phosphene Face Images in Artificial Vision.

作者信息

An Na Min, Roh Hyeonhee, Kim Sein, Kim Jae Hun, Im Maesoon

机构信息

Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.

Sensor System Research Center, Advanced Materials and Systems Research Division, KIST, Seoul, 02792, Republic of Korea.

出版信息

Adv Sci (Weinh). 2025 Apr;12(15):e2405789. doi: 10.1002/advs.202405789. Epub 2025 Feb 22.

Abstract

To evaluate the quality of artificial visual percepts generated by emerging methodologies, researchers often rely on labor-intensive and tedious human psychophysical experiments. These experiments necessitate repeated iterations upon any major/minor modifications in the hardware/software configurations. Here, the capacity of standard machine learning (ML) models is investigated to accurately replicate quaternary match-to-sample tasks using low-resolution facial images represented by arrays of phosphenes as input stimuli. Initially, the performance of the ML models trained to approximate innate human facial recognition abilities across a dataset comprising 3600 phosphene images of human faces is analyzed. Subsequently, due to the time constraints and the potential for subject fatigue, the psychophysical test is limited to presenting only 720 low-resolution phosphene images to 36 human subjects. Notably, the superior model adeptly mirrors the behavioral trend of human subjects, offering precise predictions for 8 out of 9 phosphene quality levels on the overlapping test queries. Subsequently, human recognition performances for untested phosphene images are predicted, streamlining the process and minimizing the need for additional psychophysical tests. The findings underscore the transformative potential of ML in reshaping the research paradigm of visual prosthetics, facilitating the expedited advancement of prostheses.

摘要

为了评估新兴方法所生成的人工视觉感知的质量,研究人员通常依赖于劳动强度大且繁琐的人类心理物理学实验。这些实验在硬件/软件配置有任何重大/微小修改时都需要反复迭代。在此,研究了标准机器学习(ML)模型的能力,以使用由磷光点阵列表示的低分辨率面部图像作为输入刺激来准确复制四元匹配样本任务。首先,分析了在包含3600张人类面部磷光图像的数据集上训练以近似天生人类面部识别能力的ML模型的性能。随后,由于时间限制和受试者疲劳的可能性,心理物理学测试仅限于向36名人类受试者展示仅720张低分辨率磷光图像。值得注意的是, superior模型巧妙地反映了人类受试者的行为趋势,在重叠测试查询中对9个磷光质量水平中的8个提供了精确预测。随后,预测了未经测试的磷光图像的人类识别性能,简化了过程并最大限度地减少了额外心理物理学测试的需求。这些发现强调了ML在重塑视觉假体研究范式方面的变革潜力,促进了假体的加速发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/930a/12005743/2cceff90a99a/ADVS-12-2405789-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验