Suppr超能文献

一种使用磁共振成像进行脑肿瘤检测的新型生成模型。

A novel generative model for brain tumor detection using magnetic resonance imaging.

作者信息

da Costa Nascimento José Jerovane, Marques Adriell Gomes, do Nascimento Souza Lucas, de Mattos Dourado Junior Carlos Mauricio Jaborandy, da Silva Barros Antonio Carlos, de Albuquerque Victor Hugo C, de Freitas Sousa Luís Fabrício

机构信息

Universidade Federal do Ceará, Fortaleza, 60455-760, CE, Brazil.

Instituto Federal de Educação, Ciência e Tecnologia do Ceará - Campus Fortaleza, Fortaleza, 60040-531, CE, Brazil.

出版信息

Comput Med Imaging Graph. 2025 Apr;121:102498. doi: 10.1016/j.compmedimag.2025.102498. Epub 2025 Feb 19.

Abstract

Brain tumors are a disease that kills thousands of people worldwide each year. Early identification through diagnosis is essential for monitoring and treating patients. The proposed study brings a new method through intelligent computational cells that are capable of segmenting the tumor region with high precision. The method uses deep learning to detect brain tumors with the "You only look once" (Yolov8) framework, and a fine-tuning process at the end of the network layer using intelligent computational cells capable of traversing the detected region, segmenting the edges of the brain tumor. In addition, the method uses a classification pipeline that combines a set of classifiers and extractors combined with grid search, to find the best combination and the best parameters for the dataset. The method obtained satisfactory results above 98% accuracy for region detection, and above 99% for brain tumor segmentation and accuracies above 98% for binary classification of brain tumor, and segmentation time obtaining less than 1 s, surpassing the state of the art compared to the same database, demonstrating the effectiveness of the proposed method. The new approach proposes the classification of different databases through data fusion to classify the presence of tumor in MRI images, as well as the patient's life span. The segmentation and classification steps are validated by comparing them with the literature, with comparisons between works that used the same dataset. The method addresses a new generative AI for brain tumor capable of generating a pre-diagnosis through input data through Large Language Model (LLM), and can be used in systems to aid medical imaging diagnosis. As a contribution, this study employs new detection models combined with innovative methods based on digital image processing to improve segmentation metrics, as well as the use of Data Fusion, combining two tumor datasets to enhance classification performance. The study also utilizes LLM models to refine the pre-diagnosis obtained post-classification. Thus, this study proposes a Computer-Aided Diagnosis (CAD) method through AI with PDI, CNN, and LLM.

摘要

脑肿瘤是一种每年在全球导致数千人死亡的疾病。通过诊断进行早期识别对于患者的监测和治疗至关重要。本研究提出了一种新方法,通过智能计算单元能够高精度地分割肿瘤区域。该方法使用深度学习,通过“你只看一次”(Yolov8)框架检测脑肿瘤,并在网络层末尾使用能够遍历检测区域的智能计算单元进行微调过程,分割脑肿瘤的边缘。此外,该方法使用一个分类管道,该管道结合了一组分类器和提取器,并与网格搜索相结合,以找到数据集的最佳组合和最佳参数。该方法在区域检测方面获得了高于98%的准确率的满意结果,在脑肿瘤分割方面高于99%,在脑肿瘤二元分类方面准确率高于98%,并且分割时间不到1秒,与相同数据库相比超越了现有技术水平,证明了所提方法的有效性。新方法通过数据融合对不同数据库进行分类,以对MRI图像中肿瘤的存在以及患者的寿命进行分类。通过与文献进行比较,以及与使用相同数据集的研究进行比较,对分割和分类步骤进行了验证。该方法提出了一种用于脑肿瘤的新型生成式人工智能,能够通过大语言模型(LLM)通过输入数据生成预诊断,并且可用于辅助医学成像诊断的系统。作为一项贡献,本研究采用了新的检测模型,并结合基于数字图像处理的创新方法来改善分割指标,以及使用数据融合,结合两个肿瘤数据集以提高分类性能。该研究还利用LLM模型对分类后获得的预诊断进行优化。因此,本研究提出了一种通过人工智能结合PDI、CNN和LLM的计算机辅助诊断(CAD)方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验