Rainey Robert N, Houman Sam D, Menendez Louise, Chang Ryan, Tao Litao, Bugacov Helena, McMahon Andrew P, Kalluri Radha, Oghalai John S, Groves Andrew K, Segil Neil
Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of University of Southern California, Los Angeles, California, United States.
Present address: Touro University of California, College of Osteopathic Medicine, Vallejo, California, United States.
bioRxiv. 2025 Feb 25:2025.02.20.639352. doi: 10.1101/2025.02.20.639352.
Mammalian inner ear sensory hair cells are highly sensitive to environmental stress and do not regenerate, making hearing loss progressive and permanent. The paucity and extreme inaccessibility of these cells hinder the development of regenerative and otoprotective strategies, Direct lineage reprogramming to generate large quantities of hair cell-like cells in vitro offers a promising approach to overcome these experimental bottlenecks. Previously, we identified four transcription factors-, , , and (SAPG)-capable of converting mouse embryonic fibroblasts, adult tail tip fibroblasts, and postnatal mouse supporting cells into induced hair cell-like cells through retroviral or lentiviral transduction (Menendez et al., 2020). Here, we developed a virus-free, inducible system using a stable human induced pluripotent stem (iPS) cell line carrying doxycycline-inducible SAPG. Our inducible system significantly increases reprogramming efficiency compared to retroviral methods, achieving a ~19-fold greater conversion to a hair cell fate in half the time. Immunostaining, Western blot, and single-nucleus RNA-seq analyses confirm the expression of hair cell-specific markers and activation of hair cell gene networks in reprogrammed cells. The reprogrammed hair cells closely resemble developing fetal hair cells, as evidenced by comparison with a human fetal inner ear dataset. Electrophysiological analysis reveals that the induced hair cell-like cells exhibit diverse voltage-dependent ion currents, including robust, quick-activating, slowly inactivating currents characteristic of primary hair cells. This virus-free approach improves scalability, reproducibility, and the modeling of hair cell differentiation, offering significant potential for hair cell regenerative strategies and preclinical drug discovery targeting ototoxicity and otoprotection.
哺乳动物内耳感觉毛细胞对环境压力高度敏感且不会再生,导致听力损失呈进行性且永久性。这些细胞数量稀少且极难获取,阻碍了再生和耳保护策略的发展。通过直接谱系重编程在体外生成大量毛细胞样细胞,为克服这些实验瓶颈提供了一种有前景的方法。此前,我们鉴定出四种转录因子——Sox2、Atoh1、Pou4f3和Gfi1(SAPG),它们能够通过逆转录病毒或慢病毒转导,将小鼠胚胎成纤维细胞、成年尾尖成纤维细胞和出生后小鼠支持细胞转化为诱导性毛细胞样细胞(梅嫩德斯等人,2020年)。在此,我们利用携带强力霉素诱导型SAPG的稳定人类诱导多能干细胞系,开发了一种无病毒的诱导系统。与逆转录病毒方法相比,我们的诱导系统显著提高了重编程效率,在一半的时间内实现了向毛细胞命运的转化,转化率提高了约19倍。免疫染色、蛋白质印迹和单核RNA测序分析证实了重编程细胞中毛细胞特异性标志物的表达以及毛细胞基因网络的激活。通过与人类胎儿内耳数据集比较发现,重编程的毛细胞与发育中的胎儿毛细胞非常相似。电生理分析表明,诱导性毛细胞样细胞表现出多种电压依赖性离子电流,包括初级毛细胞特有的强大、快速激活、缓慢失活电流。这种无病毒方法提高了可扩展性、可重复性以及毛细胞分化的建模能力,为毛细胞再生策略以及针对耳毒性和耳保护的临床前药物发现提供了巨大潜力。