Jung Eun Sun, Choi Hayoung, Mook-Jung Inhee
Convergence Dementia Research Center, Seoul National University College of Medicine, Seoul, South Korea.
Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.
Mol Neurodegener. 2025 Mar 27;20(1):37. doi: 10.1186/s13024-025-00825-0.
Alzheimer's disease (AD) involves a dynamic interaction between neuroinflammation and metabolic dysregulation, where microglia play a central role. These immune cells undergo metabolic reprogramming in response to AD-related pathology, with key genes such as TREM2, APOE, and HIF-1α orchestrating these processes. Microglial metabolism adapts to environmental stimuli, shifting between oxidative phosphorylation and glycolysis. Hexokinase-2 facilitates glycolytic flux, while AMPK acts as an energy sensor, coordinating lipid and glucose metabolism. TREM2 and APOE regulate microglial lipid homeostasis, influencing Aβ clearance and immune responses. LPL and ABCA7, both associated with AD risk, modulate lipid processing and cholesterol transport, linking lipid metabolism to neurodegeneration. PPARG further supports lipid metabolism by regulating microglial inflammatory responses. Amino acid metabolism also contributes to microglial function. Indoleamine 2,3-dioxygenase controls the kynurenine pathway, producing neurotoxic metabolites linked to AD pathology. Additionally, glucose-6-phosphate dehydrogenase regulates the pentose phosphate pathway, maintaining redox balance and immune activation. Dysregulated glucose and lipid metabolism, influenced by genetic variants such as APOE4, impair microglial responses and exacerbate AD progression. Recent findings highlight the interplay between metabolic regulators like REV-ERBα, which modulates lipid metabolism and inflammation, and Syk, which influences immune responses and Aβ clearance. These insights offer promising therapeutic targets, including strategies aimed at HIF-1α modulation, which could restore microglial function depending on disease stage. By integrating metabolic, immune, and genetic factors, this review underscores the importance of microglial immunometabolism in AD. Targeting key metabolic pathways could provide novel therapeutic strategies for mitigating neuroinflammation and restoring microglial function, ultimately paving the way for innovative treatments in neurodegenerative diseases.
阿尔茨海默病(AD)涉及神经炎症与代谢失调之间的动态相互作用,其中小胶质细胞起着核心作用。这些免疫细胞会响应与AD相关的病理变化而进行代谢重编程,诸如触发受体表达2(TREM2)、载脂蛋白E(APOE)和缺氧诱导因子-1α(HIF-1α)等关键基因协调这些过程。小胶质细胞代谢适应环境刺激,在氧化磷酸化和糖酵解之间转换。己糖激酶-2促进糖酵解通量,而腺苷酸活化蛋白激酶(AMPK)作为能量传感器,协调脂质和葡萄糖代谢。TREM2和APOE调节小胶质细胞脂质稳态,影响β-淀粉样蛋白(Aβ)清除和免疫反应。脂蛋白脂肪酶(LPL)和三磷酸腺苷结合盒转运体A7(ABCA7)均与AD风险相关,调节脂质加工和胆固醇转运,将脂质代谢与神经退行性变联系起来。过氧化物酶体增殖物激活受体γ(PPARG)通过调节小胶质细胞炎症反应进一步支持脂质代谢。氨基酸代谢也有助于小胶质细胞功能。吲哚胺2,3-双加氧酶控制犬尿氨酸途径,产生与AD病理相关的神经毒性代谢产物。此外,葡萄糖-6-磷酸脱氢酶调节磷酸戊糖途径,维持氧化还原平衡和免疫激活。受APOE4等基因变异影响的葡萄糖和脂质代谢失调,损害小胶质细胞反应并加剧AD进展。最近的研究结果突出了诸如视黄酸相关孤儿受体α(REV-ERBα,其调节脂质代谢和炎症)与脾酪氨酸激酶(Syk,其影响免疫反应和Aβ清除)等代谢调节因子之间的相互作用。这些见解提供了有前景的治疗靶点,包括旨在调节HIF-1α的策略,这可能根据疾病阶段恢复小胶质细胞功能。通过整合代谢、免疫和遗传因素,本综述强调了小胶质细胞免疫代谢在AD中的重要性。靶向关键代谢途径可为减轻神经炎症和恢复小胶质细胞功能提供新的治疗策略,最终为神经退行性疾病的创新治疗铺平道路。